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AFIT-ENV-DS-15-S-050 

Abstract 

Health monitoring systems have demonstrated the ability to detect potential 

failures in components and predict how long until a critical failure is likely to occur. The 

decision to implement these systems on fielded structures, aircraft, or other vehicles is 

often a struggle due to the difficulty of demonstrating to prove cost savings or operational 

improvements beyond improved safety. A system architecture to identify how the health 

monitoring systems are integrated into fielded aircraft is developed to assess cost, 

operations, maintenance, and logistics trade-spaces. The efficiency of a health monitoring 

system is examined for impacts to the operation of a squadron of cargo aircraft revealing 

sensitivity to, and tolerance for, false alarms as a key factor in total system performance. 

The research focuses on the impacts of system-wide changes to several key metrics: 

materiel availability, materiel reliability, ownership cost, and mean downtime. Changes 

to these system-wide variables include: diagnostic and prognostic error, false alarm 

sensitivity, supply methods and timing, maintenance manning, and maintenance repair 

window. Potential cost savings in maintenance and logistics processes are identified as 

well as increases in operational availability. The result of this research is the development 

of a tool to conduct trade-space analyses regarding the effects of health monitoring 

techniques on system performance and operations and maintenance costs. 
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INTEGRATED SYSTEMS HEALTH MANAGEMENT AS AN ENABLER FOR 

CONDITION BASED MAINTENANCE AND AUTONOMIC LOGISTICS 

 

I.  Introduction 

The state of health for major infrastructure and transportation systems nationally 

and globally is deteriorating. Aircraft, in particular, are an example where lengthening 

service lives and budget constraints can affect the safety of the vehicle and the occupants. 

Currently, more frequent inspections are required as service life increases to ensure safety 

of the users and the environment. The I-35W Mississippi River bridge collapse in 

Minneapolis in 2007, for instance, resulted in loss of life and drove a massive inspection 

cycle for United States highway infrastructure (Modares & Waksmanski, 2012). 

Maintenance strategies must change to meet the extended in-service requirements and the 

constraints imposed by shrinking government and industry budgets. 

Across many industries, systems are exceeding their intended design lives, 

whether they are ships, bridges or US Air Force aircraft. Structural health monitoring 

(SHM) research and application has the potential to lengthen the service life of a range of 

systems and, in some cases, predict failure modes and times. As such, funding and 

research are focused on researching new technologies and applications. However, the 

cost of large scale implementation in the case of hundreds of aircraft or approximately 

70000 “structurally deficient” highway bridges is a significant hurdle to overcome in 

most instances (Shoup, Donohue, & Lang, 2011). The impact of shrinking budgets can 

also reduce inspection frequency or delay needed repairs in favor of only performing 
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mission critical tasks (Roach, 2009). Condition based maintenance (CBM) is an evolving 

maintenance concept with a goal of reducing maintenance and thus life cycle costs while 

increasing operational availability. It is made possible, in part, by leveraging health 

monitoring techniques. Integrated system health management (ISHM) incorporates health 

monitoring functions across a platform to provide system-wide state of health diagnostics 

and prognostics. The impact of ISHM and CBM on performance, cost, and supply chain 

as well as traditional maintenance inspections and practices is the focus of this research.  

With the F-35 maintenance and logistics alone projected to cost $1.1 trillion over 

the 55-year life span amid shrinking defense budgets, the need to reduce the life cycle 

cost (LCC) of military aircraft is paramount (Shalal-Esa, 2013). Legacy aircraft may not 

be fitted with the proper sensors to fully implement health assessment leading to costly 

inspections, in both time and maintenance dollars. The inspections result in reduced 

operational availability (AO) and budget available for other needs. Figure 1 depicts the 

operational concept of a condition based maintenance system enabled through integrated 

systems health management. 

One method for improving operational availability through the implementation of 

integrated health monitoring is by using data collected to forecast and group maintenance 

tasks to reduce total downtime. This reduction can be realized through the elimination of 

multiple set-up, tear-down, and reassembly cycles in favor of a single cycle with 

numerous maintenance actions accomplished during that downtime. Further efficiencies 

may be realized through the scheduling of maintenance personnel based on knowing 

when and what repairs are required prior to beginning any maintenance activity. 
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Figure 1. ISHM/CBM Operational Concept 

Mean downtime (MDT) is a measure of the efficiency of maintenance and 

logistics processes. MDT is the total time from when the element of a system is taken out 

of service until it is again declared fully mission capable, as opposed to mean time to 

repair which is the hands-on maintenance repair portion. The DoD predicts that by 

implementing CBM MDT will be “significantly reduced” by performing demand versus 

time-driven maintenance (Under Secretary of Defense (AT&L), May 2008). Research by 

Derriso (2013), however, shows the MDT may actually increase as the system will only 

be taken down for maintenance rather than additional time-based inspections, which are 
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often short in duration. He also observes that total downtime is reduced for the ISHM 

versus the baseline time-based case.  

What is missing from the mean and total downtime measures is the value of those 

times. Is the time being spent troubleshooting symptoms, locating a fault, or waiting on 

parts, as in the baseline case?  If the time is spent only on repair of the system because the 

ISHM/CBM system predicted and isolated the failure as well as ordered parts to meet the 

demand, that time can be thought of has having more quality behind it. This downtime 

quality reflects added benefit provided by the ISHM/CBM system. 

Problem Statement 

While health monitoring techniques continue to evolve, the capability to study 

their cost and availability impacts across flight, maintenance, and logistics realms 

remains a difficult task. 

Research Objective 

Even with a policy that requires its implementation, CBM has to “buy its way” 

into the program. Service leadership and the program and support managers 

want to do the right thing for the warfighter, but a return on the investment must 

be identified and justified. In the long run, any Service effort to develop and 

deploy CBM should be leveraged by other platforms and programs (Under 

Secretary of Defense (AT&L), May 2008, p. 1-7). 

This research seeks to determine the design and implementation processes to 

thoroughly integrate ISHM, CBM and logistics systems to define operational and cost 

trade-spaces for multiple systems with multiple subcomponents in each system. 
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These examinations require a comprehensive model that explores the 

interconnections between multiple systems each having numerous components that can 

provide greater detail on the impacts of changes in one area propagating throughout the 

remainder of the model. This research focuses on the potential benefits to AO and 

operations and maintenance (O&M) cost through the use of ISHM systems to enable 

CBM. This in-turn provides a detailed examination of trade-offs available to the user. 

Providing a means to explore AO and cost impact with the opportunity to improve both 

and reduce manpower requirements is of great interest to program managers, system 

operators, and financial planners 

Investigative Questions 

The questions posed in this dissertation include the following:   

1. What are the key cost and effectiveness drivers for an ISHM enabled CBM 

and autonomic logistics process? 

2. What is a reasonable and appropriate scope for model development to 

establish performance requirements for ISHM sensors and prognostics, 

maintenance, and logistic processes? 

3. What are the operations and maintenance cost impacts of an ISHM enabled 

CBM system? 

4. Is mean downtime a good measure of system performance for ISHM/CBM 

systems? 

5. Does maintenance grouping based on prognostics improve operational 

availability, total downtime and cost? 

Methodology Overview 

The approach taken in this research builds upon prior work on health monitoring, 

condition based maintenance and logistics. An Arena
®

 model is developed incorporating 
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systems architecture principles to analyze cost and availability impacts of proposed 

concepts of operation. A baseline (current) case is compared to the same aircraft with a 

health monitoring system implemented. Analysis of support levels, both maintenance and 

supply, are examined in conjunction with health monitoring techniques. 

The first step in creating the model is to determine both the baseline and 

ISHM/CBM designs, which are found in system architectures presented in chapters 3 and 

4. The inputs required and relevant for each process are identified from this architecture. 

Defining the reliability and maintainability of the system is next with collection and 

utilization methods discussed later. Next, the processes are modeled and output 

parameters required for the measures of effectiveness and measures of performance are 

evaluated. The model captures accumulated effects on system performance and aircraft 

life. These outputs are then analyzed to determine the impacts of ISHM/CBM on the 

system as a whole.  

A baseline model, reflecting current maintenance and supply policies and 

capabilities is the first step for validation of model performance and to provide a starting 

point for system performance. Building upon the baseline “as-is” model, the inclusion of 

health monitoring and prognostics augments or replaces current maintenance inspection 

and preventive replacement procedures. Utilizing the prognostic capabilities of the health 

monitoring system, information about impending failures and system requirements is fed 

into the supply system to attempt to match the aircraft need with logistics capabilities. 

Based upon logistics, maintenance, and operational requirements, a time frame to 
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maintain the aircraft is projected to balance these requirements with the goal of keeping 

operational availability high and cost low. 

The aircraft under study in this research is the C-17 Globemaster III. These 

aircraft are currently fully fielded in the USAF inventory and they are planned to be in 

the fleet for a long duration. The C-17 employs CBM techniques to an extent, with 

limited built in test capabilities and diagnostics (Smith, 2003). While particular aircraft 

subsystems represented in the model are simulated, they do not represent actual aircraft 

systems. Therefore, this model can also be readily applied more broadly to USAF cargo 

aircraft not just the C-17. Mission profiles and preflight activities utilized are 

representative of transport aircraft operations and yearly flying hours are comparable to 

the C-17. This model will process a squadron of 12 aircraft through current operational 

activities and compare those results to the same squadron with heath monitoring, 

condition based maintenance and a supply system interwoven with these advanced 

techniques.  

Assumptions/Limitations 

Assumptions in this research are done in an effort to limit the scope and 

complexity of model. While further assumptions are contained in chapters 3-7, those 

relevant to the entire work are:  

 A squadron of 12 aircraft is used for modeling and analysis; 

 All components of interest have monitoring sensors; 

 All components are non-repairable, that is, replaced versus repaired when 

required; 
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 Performance impact to the aircraft from weight and power requirements of the 

ISHM system and sensors is negligible; 

 One subsystem comprised of 20 unique components is modeled; 

 Inflation is not considered; 

 Military deployments are ignored; 

 Personnel are devoted to the aircraft in the model; 

 Only direct maintenance actions required for the components under study are 

recorded. 

Limitations of this work lie in that capturing costs savings may not be directly 

possible for military systems due to deployments, allocation of personnel across multiple 

systems and the mix of uniformed and contractor personnel 

Implications 

This research model has the potential to not only reduce aircraft O&M costs, but 

also to improve availability and reduce maintenance manning and/or workload. This 

work allows for the visualization of system processes and the impact of health monitoring 

techniques on overall performance. Further, the methods and techniques used herein are 

applicable to other vehicle types and systems.  

A key impact of this work is the ability to analyze the effects of new health 

monitoring techniques by inputting them into the model and studying the performance 

outcomes. Alternatively, if a desired aircraft or logistics performance level is established, 

a trade study can be performed to determine health monitoring or prognostics 

requirements necessary to meet those demands. In general, this research provides for the 

analysis of ISHM enabled CBM and supply strategies for military system with emphasis 

on cost and availability impacts. 
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This work demonstrates that it is possible, based on a limited set of components, 

for significant savings to be realized in the maintenance and logistics direct costs and 

through a reduction in required personnel. Additionally, increased availability of aircraft 

allows for fewer aircraft to do the same mission. 

Preview 

This dissertation is organized as follows. Chapter 2 provides a review of literature 

relevant to this research and identifies gaps that this work studies. Chapter 3 establishes a 

system architecture and measures of effectiveness for model evaluation. Chapters 4 

through 6 are drawn from manuscripts published, in review, or to be submitted. Chapter 

4, titled “Prognostic Uncertainty,” addresses investigative questions #1 and #2 identified 

above. This chapter has been published in The International Journal of Prognostics and 

Health Management with the article titled Impact of Prognostic Uncertainty in System 

Health Monitoring. Chapter 5, titled “Component Supply Methods,” explores the effect 

of a health monitoring system on supply methodologies and addresses questions #1, #2 

and #3 identified above. This chapter is drawn from a manuscript titled Health 

Monitoring Impact on Non-Repairable Component Supply Methods that will be submitted 

to Decision Sciences. Chapter 6, titled “Maintenance Manning Processes,” addresses 

research questions #1 through #4. The text is from a manuscript titled An Examination of 

System Health Monitoring Impact on Non-Repairable Component Maintenance Manning 

that will be submitted to the Journal of Quality in Maintenance Engineering. Chapter 7 

examines investigative questions #4 and #5 with an exploration of the grouping of 
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component replacements. Finally, chapter 8 provides overall research conclusions and 

recommendations.
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II. Literature Review 

Chapter Overview 

This chapter provides background information on key concepts and techniques 

within the health monitoring, maintenance and supply realms. These topics are addressed 

in this chapter in an effort to identify gaps in current research. Within each of the realms, 

technologies and policies that enable condition based maintenance are discussed with a 

focus on cost and system availability. The topics covered herein form the foundation for 

the development of an architecture for analyzing the effects of ISHM on CBM and the 

supply chain. Additionally, chapters 4-7 contain background and motivation specific to 

the topics covered therein. 

Health Monitoring Concepts 

Structural health monitoring (SHM), while sometimes applied as monitoring for a 

system at large, is a set of techniques used either individually or in conjunction with 

others to determine the status of structural components of a vehicle or system. SHM 

systems use a variety of techniques to detect the onset or growth of damage, i.e., cracks 

or delaminations, prior to failure. Other health monitoring sensing systems exist to 

monitor electrical or electronic systems as well as rotating machinery (aircraft engines) or 

hydraulic systems. A good review of SHM technology and application is found in 

(Glaser, Li, Wang, Ou, & Lynch, 2007). Integrated vehicle health management (IVHM) 

and integrated systems health management (ISHM), used interchangeably in published 



12 

 

works, seek to compile the various SHM and other sensor networks and interpret the 

health of the vehicle or system as a whole. This processing can be done on or off-board 

the system in question depending on system intent and requirements.  

Prognostics and health management (PHM) is synonymous with IVHM and 

ISHM in most literature, emphasizing the prognostics capability to determine the 

remaining useful life (RUL) of a component. RUL is then used to aid in the determination 

of when and how to maintain the system. Examining the RUL of individual components 

or subsystems can assist in maintenance planning and in supply requisitions, transitioning 

from time-based replacement to repair or replacement based on actual material condition. 

The use of RUL information for mission planning, maintenance optimization and supply 

chain management is often referred to as autonomic logistics (AL) as the ISHM system 

performs these functions with little or no human interaction. Progressing from the 

component level sensing systems through the compilation of their data and forecasting of 

impending failure enables the transformation in maintenance concepts. Hess (2005) 

decomposes prognostics and health management (PHM) with three terms: 

 Enhanced Diagnostics: the process of determining the state of a component 

to perform its function(s), high degree of fault detection and fault isolation 

capability with very low false alarm rate; 

 Prognostics: actual material condition assessment which includes predicting 

and determining the useful life and performance life remaining of components 

by modeling fault progression. 

 Health Management: the capability to make intelligent, informed, 

appropriate decisions about maintenance and logistics actions based on 
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diagnostics/prognostics information, available resources and operational 

demand. (p. 3) 

These three terms, while broad, form the foundation for measuring the 

effectiveness of an ISHM/CBM system. Enhanced diagnostics encompasses probability 

of detection as well as false alarms, directly impacting how often the aircraft must be 

taken out of service for inspection and/or repair. Prognostics are the ability of the system 

to forecast the remaining useful life of the aircraft, safety of flight and prediction of 

impending failures. Health management takes the data from the previous two and 

determines when to order spares and when to perform maintenance. 

Maintenance Concepts 

 Maintenance has evolved over time from a “fix it when it breaks” policy to the 

current focus on condition based maintenance programs. Table 1 presents a categorical 

breakdown of maintenance approaches and their attributes. Rising costs, longer service 

lives and reduced manpower have driven a proactive approach to maintaining systems. 

The reactive or corrective maintenance approach forces either a costly spares stockpile to 

prepare for all possible failures or waiting for replacement parts to arrive resulting in 

lower operational availability (Amari, McLaughlin, & Pham, 2006). One of the first 

advancements in maintenance practice was to establish regular inspection and preventive 

maintenance (PM) intervals. These time-based techniques analyze failure data, either 

anecdotal or service history, to determine appropriate timelines to inspect and replace 

components or systems (Walls, Thomas, & Brady, 1999). This PM approach results in 

reduced catastrophic failures and more predicted maintenance cycles (Deputy Under 
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Secretary of Defense for Logistics and Materiel Readiness, May, 2008). Unanticipated 

failures still occur outside the preprogrammed maintenance windows and must be taken 

into account.  

Additionally, PM subjects the system to unnecessary “repair” based on the 

required schedule for the system. The unneeded repair adds extra expense to the system 

since the component had remaining useful life, and it increases the probability of damage 

resulting from the maintenance action. The diagnostic CBM approach is based on 

inspections, visual, automatic, non-destructive, and the like, and parts are then repaired or 

replaced as required. The prognostic CBM approach goes a step further than the 

diagnostic approach and takes the data from the inspections and forecasts when repairs or 

replacements are required. As Iyoob, Cassady, and Pohl (2006) point out, a majority of 

studies related to maintenance practices ignore limited budget, manpower or time 

constraints. They present logic for determining maintenance actions when the time 

between missions does not provide the opportunity to make all desired repairs.  

Condition based maintenance and other predictive maintenance programs have 

further evolved from preventive strategies to analyzing system health and forecasting 

remaining life. Time-based inspections alone will not detect all failures, especially if the 

inspection timing associated with the component is such that a critical defect occurs at an 

unanticipated interval. The location of the defect also plays an important role in the 

failure detection. If the defect is located in an infrequently inspected or difficult to access 

area, a small amount of damage can grow to catastrophic amounts prior to detection. In 
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such instances, the appropriate application of SHM technology can potentially save a 

system from severe or catastrophic damage. 

Table 1. Range of Maintenance Approaches 

Maintenance Approaches 

Category 
 

Sub-

Category 

 

 
When 

Scheduled 

 

 

Why 

Scheduled 

 

 

 

How 

Scheduled 

 

 

Kind of 

Prediction 

Reactive Proactive 

Run-to-fail Preventive Predictive 

Fix when it 

breaks 
Scheduled maintenance 

Condition-based 

maintenance-

diagnostic 

Condition-based 

maintenance- 

prognostic 

No 

scheduled 

maintenance 

Maintenance based on a 

fixed time schedule for 

inspect, repair and overhaul 

Maintenance 

based on current 

condition 

Maintenance based on 

forecast of remaining 

equipment life 

N/A 

Intolerable failure effect 

and it is possible to prevent 

the failure effect through a 

scheduled overhaul or 

replacement 

Maintenance 

scheduled based 

on evidence of 

need 

Maintenance need is 

projected as probable 

within mission time 

 

N/A 

Based on the useful life of 

the component forecasted 

during design and updated 

through experience 

Continuous 

collection of 

condition 

monitoring data 

Forecasting of 

remaining equipment 

life based on actual 

stress loading 

None None 

On- and off-

system, near-

real-time trend 

analysis 

On- and off-system, 

real-time trend 

analysis 

(Deputy Under Secretary of Defense for Logistics and Materiel Readiness, May, 2008) 

Why CBM? 

Condition based maintenance, when appropriately applied, can reduce the life 

cycle cost of a system. The United States Department of Defense has implemented a 

program, known as condition based maintenance plus (CBM+), to encourage the 

implementation of processes in support of CBM across the DoD. Department of Defense 
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Instruction (DoDI) 4151.22 defines CBM+ as “the application and integration of 

appropriate processes, technologies, and knowledge-based capabilities to achieve the 

target availability, reliability, and operation and support costs of DoD systems and 

components across their life cycle” (Under Secretary of Defense (AT&L), May 2008, p. 

1-1). CBM is a demand driven maintenance process based on indications of stress or 

impending failure of a component or system. Ellis (2008) argues that cost-effective 

systems monitoring allows repair actions based on system condition rather than costly 

time-based maintenance. The health monitoring system monitors component sensor data 

until a predetermined point prior to failure, then triggers maintenance to repair or replace 

the part. CBM can also proactively examine other systems in the vehicle or structure as 

well and compile this data with projected use to determine the maintenance window that 

optimizes downtime, manpower and spares. Additionally, interim, time-based inspections 

required under the baseline PM approach are forgone in lieu of continuous analysis of the 

aircraft via the ISHM system (Ellis, 2008). 

CBM Life Cycle Cost Impacts 

The real challenge is to develop valid and measurable metrics for quantifying the 

impact of the various prognostic technologies. The first step is to process a 

cost/benefit analysis using appropriate modeling tools, for each component and/ 

or subsystem/system to evaluate the consequences of developing and supporting 

each component (Hess, Calvello, Frith, Engel, & Hoitsma, 2006, p. 6). 

Published literature shows the cost-saving potential of condition based 

maintenance and health monitoring systems across the life cycle: 
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 40% for vehicle maintenance (Walls, Thomas, & Brady, 1999) 

 30% to 50% for fuselage panels (Pattabhiraman, Kim, & Haftka, 2010) 

 10% electrical components (Scanff et al., 2007) 

 50-80% for the Boeing 777 (Gorinevsky, Gordon, Beard, Kumar, & Chang, 

2005).  

The issue in many of these studies is the failure to capture costs outside of a few 

components and generally restrictive assumptions. Additionally, most do not address how 

the prognostics of ISHM can impact supply timing and costs. Since maintenance can be 

forecast to match impending failures, personnel hours can be managed accordingly to 

meet demand.  

Several authors have researched and proposed methods of considering life cycle 

costs (LCC) for systems, and they discuss methods for conducting cost/benefit analyses 

on diverse systems to determine the impact of an ISHM system on the O&M cost and 

LCC of a system, but fail to include logistics in their analyses. Brand and Boller (2000) 

use inspection times, research and development, and labor costs for higher level cost and 

time savings to explore inspections on commercial aircraft. Walls, Thomas and Brady 

(1999) examine a single critical component of hydraulic servos utilizing a decision tree to 

assess probability of failures and MTBF of the components, neglecting sensor inputs. 

Lugtigheid, Banjevic, and Jardine (2005) discuss repair or replace decisions with 

imperfect repair, but fail to use prognostics to inform their repair decisions, instead 

utilizing preventive maintenance approaches. Banks, Reichard, Crow and Nickell (2005) 

explore battery systems for armored vehicles using prognostics to calculate savings 
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through a return on investment based on replacement decisions. They discuss logistics 

inputs, but do not include them in the model.  

Amari, McLauchlin, and Pham (2006) research CBM with manual inspections at 

predetermined intervals and the effect of use conditions on the wear rate of components, 

utilizing a Markov process to study cost savings. Pattabhiraman, Kim and Haftka (2010) 

compare manual versus ISHM based inspections utilizing maintenance, manufacturing 

and fuel costs for an aircraft. Further Pattabhiraman, et al, discuss a hybrid model of 

manual and ISHM inspections on a system. Gyekenyesi (2013) discusses a transitional 

approach for legacy systems not previously fitted with health monitoring systems and for 

systems with inadequate coverage by using non-destructive inspection (NDI). He further 

states that NDI can provide confirmation or added peace of mind for ISHM system 

results while the users of health monitoring systems gain trust in the prognostics. 

Pattabhiraman et al., (2010) also discuss a hybrid model for critical items which could be 

applied in a similar manner as Gyekenyesi. While these methods should produce savings, 

they are not addressed in this research. 

Wilmering and Ramesh (2005) assessed the impact of ISHM approaches on 

overall system ownership costs. They argue for a system engineering approach to assess 

and blend requirements with technologies through the life cycle of a system to reduce 

cost. A seven step method is used to rank ISHM solutions on the basis of component 

criticality, failure modes, sensor technologies and ISHM approach to perform a 

cost/benefit analysis. This method is similar to the failure mode, effects, and criticality 

analysis (FMECA) outlined by Blanchard and Fabrycky in Systems Engineering and 
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Analysis, (2005). The aforementioned process is conducted within The Boeing Company 

Ownership Cost Calculator for Aerospace health Management (OCCAM) tool. The 

OCCAM tool captures maintenance and logistics processes, both recurring and non-

recurring costs. A key item examined is what happens when a part fails, specifically the 

impact on the maintenance and logistics process. Labor rates, material costs, inflation and 

discount rates are combined to determine the cost impact of decisions. Two limiting 

assumptions in this model are that a fixed spares demand is assumed rather than 

component utilization projected by the health management system, and repairs are 

perfect. The tool also provides for some maintenance scheduling based in part on LCC; 

this neglects the impact on availability of the aircraft which can play a large role. 

Modares and Waksmanski (2012) state early detection of faults with health 

monitoring can limit repair costs and catastrophic failures. In offshore wind turbines, 

SHM tools, maintenance scheduling, and performance of the SHM system determine the 

added value of the system of systems (A. Van Horenbeek, Van Ostaeyen, Duflou, & 

Pintelon, 2013). Van Horenbeek et al. (2013) lay out a system of equations that includes 

as inputs: failure cost; component reliability; maintenance costs; and spare parts costs, to 

determine the added value of health monitoring for a system. This system provides a 

thorough examination for a single system with multiple subcomponents. It does lack, 

however, inventory management and the effects of multiple systems operating 

simultaneously. 

The cost of the ISHM/CBM system must be accounted for in the LCC evaluation 

as well. While the long term O&M costs may be significantly reduced, the upfront cost of 
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development and deployment of the systems is not inconsequential. With the 

development cost for the F-35’s ALIS system approaching half a billion dollars, the 

technology and training costs play a role (Butler, 2013). Degradation of the ISHM/CBM 

system must be taken into account as well as degradation in the overall system, in this 

case aircraft performance (e.g., increased weight and power requirements). 

Not germane to the LCC methods discussed above is a cost benefit analysis and 

the translation from private, for profit frameworks, to military applications. Assigning 

cost impacts of downtime for a commercial aircraft is different than for a military 

aircraft. While maintenance and spare parts costs are counted in both, the cost of not 

having the plane in operation is quantifiable, at least on a broad scale, in the commercial 

sector. Lost revenue, penalties for occupying gates too long, transferring another aircraft 

to accommodate passengers, the cost of refunding or transferring passenger tickets can all 

be valued. On the military side, attempting to value downtime and ultimately operational 

availability is a much more difficult task. A thorough examination of the system 

capabilities, costs and infrastructure paired with the logistics, operating and maintenance 

requirements must be accomplished to accurately assess the viability of an ISHM system 

to reduce the cost of a CBM program. 

By the DoD’s own admission, the accuracy of current LCC figures is a rough 

estimate as credible means to measure it are not readily available (Under Secretary of 

Defense (AT&L), May 2008). In an attempt to gain a clearer picture of the true cost of a 

system, the DoD also proposes a Total Life Cycle Systems Management (TLCSM) 

metric of cost per unit of operation as what it calls “the best measure of life-cycle costs,” 
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(Under Secretary of Defense (AT&L), May 2008). Ryan’s assessment of the DoD LCC 

cost accuracy echoes those above, “[d]espite the fact that DoD cost estimating practices 

have become increasingly sophisticated, the actual program cost estimates that are 

produced remain poor, at least when compared to the final, actual costs of the program” 

(Ryan, Schubert, Jacques, & Ritschel, 2013, p. 73). Capturing these costs in the 

respective baseline and ISHM models will likely also be difficult. Millar (2007) cites that 

the market’s “invisible hand” holds back implementation and that systems engineering 

has thus far not demonstrated the case for use of ISHM to support system sustainment. 

The “invisible hand” referred to includes DoD and USG policies that direct the Air Force 

practices in acquisition, maintenance and supply. Additionally, while the goal is to save 

the taxpayers money, the DoD does not have the commercial profit requirement and 

pressure found in industry.  

Maintenance Activity Grouping 

The goals of grouping maintenance activities utilizing prognostics are reduction in 

cost to maintain and increased operational time. The cost savings in grouping 

maintenance activities comes, in general, from a reduction in set-up, tear-down and 

reassembly times, yielding a reduction in labor costs for multiple individual repair 

actions. Operational availability is increased likewise as the total downtime required for 

these repairs or replacements is reduced. The earlier a maintenance action is scheduled, 

the more useful life is wasted but, in general, the probability of failure is lower. 
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Prognostics, enabled through onboard sensor systems allow the useful life to be 

consumed up to a predetermined risk level based on uncertainties in the system. 

Camci (2009) utilizes a genetic algorithm approach to optimize maintenance for 

the CBM case but does not examine the benefits over a PM system. The approach shows 

improvement in the generic cost of optimized maintenance using prognostic versus 

prognostics enabled CBM alone. Van Horenbeek and Pintelon (2013a; 2013b) use a 

heuristic search algorithm to determine the optimal maintenance time and group with 

results showing prognostic maintenance (CBM) superior to standard time-based 

maintenance policy. The approaches used by Camci and Van Horenbeek represent most 

of the work in this area, but do not address the impact of multiple systems with multiple 

components and only seek to optimize for cost with little notion of the impact to system 

operational availability. 

Remaining Useful Life 

Since achieving the theoretical limit of 100% failure avoidance is both 

impractical and wasteful, we are forced to accept some level of risk. (Hess et al., 

2006, p. 9) 

 

While the methods and techniques used for remaining useful life (RUL) 

calculations are outside the research proposed here, their use is essential for the CBM 

maintenance and supply processes. A good summary of RUL techniques is found in (Si, 

Wang, Hu, & Zhou, 2011). Risk posture and acceptance established by policy or unique 

mission needs help to determine when the CBM system calls for replacement of a given 
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component or system. This understanding is necessary because RUL calculations have 

inherent uncertainty as they are generally derived based upon probability distributions. 

After probability of detection, which is a function of the sensor type and software, 

remaining useful life prognostics are the most vital processes performed by the ISHM 

portion of the ISHM/CBM system. 

RUL inference must take into account the P-F curve in Figure 2 for individual 

components, where P is the potential failure or point at which deterioration begins or is 

detected. The F is the functional failure or where the part or system actually breaks. The 

horizontal lines on the curve correspond to limits that are either functions of the system 

or prescribed by policy or directives. System detection limit is a function of the ISHM 

system and physical attributes of the aircraft; the point of detection (B) occurs where the 

failure curve of the component crosses the detection limit. Notification, a policy driven 

component, occurs at point C and begins the CBM supply and maintenance planning 

window. For components with safety limits, i.e., those that would cause a catastrophic 

loss, point D is where the system would be taken down for maintenance. 
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Figure 2. Remaining Useful Life Schematic (Jennions, 2011) 

In the case of a time or prediction based “failure” when the part is replaced with 

some serviceable life remaining, policy based on observed and physics based estimates of 

failures dictates the appropriate time frame. The goal is that the probabilistic estimates of 

RUL based on real time monitoring allow increased time to accumulate on parts, thus 

increasing the MTBF for the ISHM aircraft and total costs associated with replacement 

parts. 

Supply Chain Forecasting for ISHM Aided CBM Systems 

ISHM systems in the US Air Force are currently limited to the F-22, which 

requires manual collection and analysis of sensor data, and test articles on individual 
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systems and limited engine monitoring systems on several other platforms. These efforts 

are not integrated with the logistics chain to optimize maintenance actions with supply 

requirements. While individual systems addressing health monitoring exist in the USAF 

inventory, e.g., F-22 and C-17, the future goal of Air Force ISHM/CBM integration, lies 

in the F-35. One of the F-35’s keys to success and reduction in O&S costs is the 

Autonomic Logistics Information System (ALIS).  

ALIS was designed to be a one-stop system to monitor aircraft systems, predict 

system failures, increase maintenance efficiency and streamline the supply stream by 

combining the range of systems currently in use for existing Air Force aircraft. The F-16, 

which is the standard for legacy aircraft, has separate and distinct systems for supply, 

maintenance, and pre and post mission inspections (Butler, 2013). These legacy systems 

require multiple career fields and administrative processes that increase the turn time 

between aircraft missions. Communication between the aircraft and ground systems by 

ALIS allows optimization of down-time and prepositioning of required parts, ensuring 

maintenance personnel maximize the availability of the aircraft. An example of 

maintenance time savings is the use of electronic tracking of fluid levels versus manual 

gauges. Additionally, Butler (2013) states that flight control maintenance on the F-35 is 

reduced from 8-14 hours on legacy aircraft to 5 minutes. Further details on this dramatic 

reduction are not provided in the article. When maintenance actions across the F-35 are 

compounded, the potential for large downtime savings is immense. Whether or not these 

savings can be realized is yet to be seen. As the F-35 approaches initial and then full 
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operating capability, maintenance and logistics data will be analyzed to determine the 

true value of the ALIS system. 

Perhaps the key feature of ALIS is the prognostic capability. The prognostics and 

health management (PHM) system of the F-35 shifts maintenance policy from preventive 

time-driven routines to condition or demand driven actions. The PHM system calculates 

the remaining useful life of a system or component which flows into the supply pipeline 

to ensure lead times for part orders are met when maintenance is required. The fielding of 

ALIS or any similar component or vehicle-wide system on legacy aircraft will require 

concept of operations (CONOPs) changes for maintenance and operations. These 

changes, while they must be enforced and driven from higher command levels, must 

obtain “buy-in” at the squadron level as they are unproven and potentially unreliable. 

Byer, Hess, and Fila (Byer, Hess, & Fila, 2001) project that PHM’s automation capability 

can eliminate bureaucracy built up in military logistics and supply systems. If operational 

change can be affected, streamlining the maintenance, supply and operations activities 

proposed in the ALIS system are achievable.  

The ALIS system is not without problems though, along with the rest of the F-35 

program. With a development cost approaching $448 million, ALIS is not yet proven and 

has security flaws (Butler, 2013). Additionally, the system is behind schedule and fails to 

meet maintenance and sortie generation requirements for the F-35. “To date, diagnostic 

system performance has failed to meet basic functional requirements, including fault 

detection, fault isolation, and false alarm rates,” (Director, Operational Test & 

Evaluation, 2013, p. 49). In the interim, manual intervention by maintainers, using legacy 



27 

 

aircraft techniques, and contractor support are used to keep the aircraft flying thus 

negating the cost savings that could be afforded by the ALIS system. 

Logistics Methods 

Supply chain optimization is handled in many ways across industry. Some smaller 

businesses manufacture all required parts in house and fix them as needed. This is seldom 

the case though and most businesses and industries depend on collaboration with other 

agencies. 

In the commercial world, profit is the end goal for companies and should be the 

selling point for ISHM systems. As Grubic (2009) points out, PHM can shift the 

operating paradigm for a system but capturing the impact to potential increases in 

revenue is often overlooked aside from the often cited reduction in maintenance costs. 

The ability to foresee maintenance issues and optimize when systems are taken offline for 

repair is a key part of this revenue generation. Unplanned downtime drives millions of 

dollars in cost for organizations with unplanned maintenance costing three to ten times 

that of scheduled or predicted maintenance activities (Taft, 2013). This is a key 

difference between military and commercial activities in the logistics and maintenance 

area. Commercial companies are in business to make a profit, whereas military forces 

face no such requirement other than to be good stewards of taxpayer dollars.  

In the commercial aerospace field, Boeing is an industry leader in analyzing 

logistics requirements for aircraft fleets. Boeing’s Airplane Health Management (AHM) 

system takes real-time data from the aircraft to identify and diagnose faults. This data is 
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used to provide error identification and historical tracking to aide in fault troubleshooting 

to optimize operations and maintenance efficiencies (The Boeing Corp, 2013). 

Additionally, Boeing developed an Arena
®

 discrete event simulation model for the civil 

aviation sector to analyze the performance of health management options. (Williams, 

2006)  The AHM system performs similar functions as the ALIS system, with the 

commercial addition of providing a decision tool to conduct critical profit analyses. As 

shown with both the ALIS and AHM systems, prognostics integrated with maintenance 

and supply chains can enable condition based maintenance. It is this end state that the Air 

Force and DoD as a whole is striving to meet, not to turn a profit as in private industry, 

but to continue operations in a shrinking fiscal environment. 

Air Force Supply Issues 

The General Accountability Office conducted several audits of DoD and in 

particular Air Force supply systems over the past 20 years. Their findings range from 

lack of items to enormous on-hand stock and unneeded parts on order accounting for 

billions of dollars in unneeded parts and operational rates well below goals. (Government 

Accountability Office, 2001; Government Accountability Office, 2007)  “Having spare 

parts available when needed to perform required maintenance is critical to the 

Department of Defense’s accomplishment of its missions. Shortages of spare parts are a 

key indicator of whether the billions of dollars annually spent on these parts are being 

used in an effective, efficient, and economical manner,” (Government Accountability 

Office, 2001, p. 1). “In January 2001, we reported on Department of Defense 
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management challenges and noted that the Department has had serious weaknesses in its 

management of logistics functions and, in particular, inventory management,” 

(Government Accountability Office, 2001, p. 3). These GAO reports along with several 

DoD initiatives to correct the findings are discussed in this section. 

The spare parts shortage leads maintainers to cannibalize parts, leading to extra 

work to fix the aircraft they “borrowed” from. This cannibalization opens the possibility 

of damaging the needed part in removing it from the donor system as well as causing 

collateral damage in the process. The “borrowed” part will also generally not last as long 

as a new component, thus requiring additional maintenance (Government Accountability 

Office, 2001). Reasons for parts shortages range from inadequate forecasting, repair and 

manufacturing issues, poor replacement part reliability, and contracting problems. In one 

extreme example, demand for an engine bolt was projected at 828 units when actual 

requirements were over 12,000 in a single quarter. (Government Accountability Office, 

2001)  While this is an extreme example, it is indicative of problems with the forecasting 

models used by the Air Force to determine part requirements. This issue was still present 

in a 2010 review of DoD logistics citing poor requirements projections as a leading cause 

of inventory shortages and surpluses (Atchley et al., 2010). Implementing ISHM/CBM 

systems on a broad range across the service would increase the forecasting capability and 

provide near real time insights into requirements, both existing and in the near future. 

Between 2002 and 2005 Air Force spares shortages were, as seen in the Table 2 below, 

between 6 and 8% of total requirements averaging over $1 billion is shortfalls. The 

reasons given then were the same as in 2001 and again in 2010. 



30 

 

Table 2. Air Force Inventory Shortages from FY 2002 through FY 2005 

 

(Government Accountability Office, 2007) 

A shortage of spares is not the only issue facing the Air Force. The GAO (2007) 

stated that Air Force on-order spares without projected need for future use accounted for 

$1.3 billion or 52% of on-order parts. DoD and Air Force policy do not incentivize or in 

some cases allow for cancellation of orders without significant monetary penalties. 

Additionally, between 2002 and 2005 65% of on-hand inventory, amounting to $18.7 

billion, was not required for projected use rates. The additional inventory was calculated 

by the GAO to cost another $15 million yearly for storage. Further compounding the 

unneeded on-hand inventory is that some items have a shelf life that requires disposal or 

refurbishment after a set amount of time. The problem does not lie entirely within the Air 

Force supply system control. The DoD’s procurement policies drive sparing decisions to 

be made between 2 and 4 years prior to actual need of the part due to lead times and the 

DoD budgeting process (Atchley et al., 2010). This is a military issue that is not faced on 

the same scale in the corporate arena. A 2010 study on DoD logistics does comment on 

the difficulty of forecasting spares requirements stating these projections are rarely 100 

percent accurate. The prognostics capability of ISHM systems can increase the reliability 
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of spares forecasting and, depending on projected use rates, keep sparing purchases 

within DoD budget timelines. 

Because the military flies its aircraft beyond original service lives, B-52 and KC-

135 for example, supply and maintenance issues exist. On one hand, if repairs can be 

made on long life items, it can save money, but when you need a new part eventually, the 

supplier doesn’t make them anymore. An interesting dilemma arises when there is only 

one entity driving demand for a system such as a military aircraft. Organic military repair 

capabilities can drive the demand for the part so low it no longer makes financial sense 

for the manufacturer to support smaller components, thus when the part can no longer be 

repaired it cannot be purchased. Efforts to maintain industrial base through prescribed 

purchases can keep production lines open but do little to address over supply of some 

items in stock. Additionally, there is a demand driven issue for military hardware during 

times of conflict. Post-September 11, 2001, Air Force aircraft experienced a marked 

increase in sortie rates and flying hours, leaving logistics projections ineffective in 

determining requirements (McCoy, 2011). While an ISHM/CBM system would do little 

to project a wartime surge, it could provide a fleet-wide look at the remaining useful life 

of parts and allow decisions on purchasing priorities to be made. The ability to extend the 

life on systems through the prognostic capability of ISHM also allows aircraft to operate 

closer to the safe life limits of parts as real time condition can be obtained. The goal of 

ISHM enabled CBM systems is matching aircraft requirements with the supply and 

maintenance processes. By ensuring parts are available when needed, while keeping only 
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the required material on hand, supply and storage costs are reduced while maintenance 

downtime can be managed. 

Modeling Approaches 

Rebulanan models 7 elements in his JAVA model simulating the JSF ALS 

system: aircraft; health management system and LRUs; communication system; supply 

(depot, base, and flightline) and; maintenance (Rebulanan, 2000). Rebulanan uses 3 

MOPs to evaluate model performance. Aircraft availability, both the number of aircraft 

per day and percentage available for mission (Ao), average number of sorties per day and 

average wait time for supply. Rebulanan’s model shows sensitivity of the supply wait 

time to the PHM detection lead time for an impending failure, and the supply stock 

levels. This outcome is somewhat intuitive in that as the prognosis of an impending 

failure is detected earlier and with greater accuracy, the supply system can plan further in 

advance, ensuring parts are available when required. Malley (2001) developed a JAVA 

model based on Rebulanan’s work with a focus on PHM intricacies. Malley examines 

batching to make RUL predictions, that is, processing data grouped over a set duration 

rather than instantaneously to dampen noise in the signal. The findings showed batch 

processing decreased the false alarm rate over the life of a part, but delayed detection 

time of impending failures. 

Yager (2003) approached modeling autonomic logistics for aircraft as a queuing 

theory model to examine sortie generation rates. The model shows a higher sortie 

generation rate for the ISHM aircraft. Yager’s model does have some drawbacks for 
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implementation on a larger and closer to realistic system in that there is no penalty for 

false alarms in the ISHM system and prognosis is assumed to be perfect. 

Rodrigues and Yoneyama (2012; 2013) explore the effect of prognostics on spare 

parts inventories for both repairable and non-repairable systems compared with 

conventional supply processes. Both studies, simulated over 15 years each, show cost 

savings for the ISHM enabled system over the conventional one. For the non-repairable 

model a discrete event simulation is used and considers parts, storage and out of stock 

costs. Out of stock costs are difficult to quantify but do impact downtime for supply, 

which is where the impact is captured in this research model. The supply system is 

represented by a reorder point and an order quantity with varying levels for each. In the 

conventional system these are fixed, but in the ISHM model they are updated based upon 

system inferences. A limitation of this study is that only one item is investigated, leaving 

interactions of multiple components in question.  

Exploring the effect of RUL inferences on repairable systems Rodrigues and 

Yoneyama (2013) found an improvement in fleet availability through managing when 

items were sent for repair. Holding, repair and out of stock costs were used again as the 

measure for cost. Sparing levels were varied for the systems and costs and system 

availability favored the ISHM scenario at each level. This model does not include 

maintenance costs or interactions thus the system availability cannot be considered 

operational availability. 
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Summary of Gaps 

The review of current literature in this chapter highlights that most modeling 

efforts lack inclusion of logistics in their research. As such, the models cannot 

comprehensively explore the interactions between ISHM, CBM and logistics systems. 

Further, the inclusion of multiple systems in this research, a squadron of aircraft with 

multiple components is left unexplored. This gap could yield additional cost and time 

savings if the health monitoring, maintenance and logistics system interactions can be 

synchronized. Using the information above to optimize or group maintenance activities 

while maximizing AO and minimizing cost for a system of systems, is another area of 

research open for study. Further approaches and their associated benefits and limitations 

are discussed in chapters 4-7. 



35 

 

III. System Architecture and Metrics 

Methods to Evaluate ISHM/CBM Systems 

The DoD explains Condition Based Maintenance Plus (CBM+) as the use of 

processes and technologies to increase the reliability and maintenance effectiveness of 

systems (Deputy Under Secretary of Defense for Logistics and Materiel Readiness, May, 

2008). Further, maintenance is performed based on need utilizing systems engineering 

approaches to collect and analyze data in support of the decision-making processes. The 

DoD Condition Based Maintenance+ Guidebook prescribes four life-cycle sustainment 

outcome metrics to evaluate CBM+ implementation in the Total Life Cycle Systems 

Management (TLCSM) process: 

Materiel availability (MA) is a measure of the percentage of the total inventory of 

a system that is operationally capable (ready for tasking) of performing an 

assigned mission at a given time, based on materiel condition. It can be expressed 

mathematically as the number of operational end items [FMC] divided by the 

total population [fleet size]. Materiel availability also indicates the percentage of 

time a system is operationally capable of performing an assigned mission. 

Materiel reliability (MR) is a measure of the probability the system will perform 

without failure over a specific interval. Reliability must be sufficient to support 

the warfighting capability needed. Materiel reliability is generally expressed in 

terms of a mean time between failures (MTBF), and, once operational, can be 

measured by dividing actual operating hours by the number of failures 

experienced during a specific interval. 

Ownership cost (OC) balances the sustainment solution by ensuring the O&S 

costs associated with materiel readiness are considered when making decisions.  
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Mean downtime (MDT) is the average total time required to restore an asset to 

its full operational capabilities. MDT includes the time from… an asset being 

down to the asset being given back to operations or production to operate. 

(Deputy Under Secretary of Defense for Logistics and Materiel Readiness, May, 

2008, p.  1-5) 

 

The above metrics align with the Sustainment key performance parameter (KPP) 

spelled out in the Joint Capabilities Integration and Development System (JCIDS) 

manual (2015). Falling under the availability KPP, MA and AO represent operational 

capability. Material reliability maps to the JCIDS reliability KSA, and OC falls under the 

O&S cost KSA. The combination of these high level metrics is an aggregation of the 

measures of effectiveness (MOEs) and measures of performance (MOPs) for the baseline 

and monitored systems.  

Systems Architecture Approach 

The foundation of an architecture for a system is the ability to map key program 

objectives to system performance and design. Table 3 lists the interaction between key 

CBM+ objectives and the aforementioned metrics where MA is materiel availability, MR 

is materiel reliability, OC is the ownership cost and MDT is the mean downtime. The 

four metrics are discussed further in the next section. These objectives are not all 

quantitatively measurable, but must still be considered and assessed when qualitatively 

evaluating the system. In mapping these objectives to the metrics, the DoD provides a 

conduit for candidate approaches to ensure they meet the goals for the process. The 

relationship between objectives and their respective metrics and subsequent 
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decomposition into system level measures of performance affords the opportunity to 

compare multiple approaches using the same upper level metrics. 

Table 3. CBM+ Objectives and Metrics       

OBJECTIVE MA MR OC MDT 

Enhance maintenance effectiveness with integrated 

maintenance and logistics systems 

X   X 

Incorporate advanced engineering, maintenance, 

logistics/supply chain, configuration management, and 

information technologies 

 X   

Employ weapon system designs that use measurable, 

consistent, and accurate predictive parameters from 

embedded CBM capabilities 

 X   

Improve data about maintenance operations and  parts/system 

performance 

X   X 

Improve advanced diagnostics, system prognostics, and health 

management capabilities based on current condition data 

X X X X 

Provide more accurate item tracking capabilities    X 

Reduce maintenance requirements by performing 

maintenance tasks only upon evidence of need (more 

proactive/predictive, less preventive and less corrective) 

X  X  

Enable more effective maintenance training    X 

Create a smaller maintenance and logistic footprint   X  

Improve maintenance capabilities, business processes, 

supply/maintenance planning, and responsiveness leading to 

optimum weapon system availability 

   X 

Minimize unique support equipment and information 

systems for individual weapon systems 

  X  

Improve system maintainability as a part of design 

modification through the use of reliability analysis 

 X  X 

Provide interoperability/jointness to the warfighter X  X  
 

(Under Secretary of Defense (AT&L), May 2008) 

Detailed cost comparisons, made possible by comprehensive system architecture, 

along with maintainability studies provide the foundation for assessing the feasibility of a 
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SHM system to compliment CBM. As Grubic (2009) points out, many approaches to 

ISHM/CBM “have been developed by engineers for engineers and therefore suffer from 

lack of business input. The latter brings with it a view of the customer, and the cultural 

and process drivers that are so important to the success” (p. 2). Byer lays out a process to 

evaluate an ISHM/CBM system: 37 

1. Define a Baseline System without PHM and the Aircraft System with PHM; 

2. Develop Reliability and Maintainability Predictions for the Components of the 

Aircraft; 

3. Define the Measures of PHM Effectiveness; 

4. Metrics Associated with the Measures of Effectiveness; 

5. Estimating the Impact of PHM on Reducing the Cost of Consumables; 

6. Estimating the Impact of PHM on Reducing Maintenance manpower Costs; 

7. Estimating the Non-recurring and Recurring Costs of Providing PHM; 

8. Develop the Cost Benefit Results; 

9. Estimating the Impact of PHMs on Non Dollar Denominated Benefits; 

a. Sortie Generation Capability 

b. Reduction in the Incidence of Major Accidents (Byer et al., 2001, p.  

3098). 

In new structures and vehicles, including both CBM and ISHM in the system 

architecture early in the process allows for trade-offs to be made on cost, complexity and 

operational availability (AO). For fielded systems, the complexity increases since most 

systems are deployed without health monitoring allowances and must be retrofitted 

which, depending on level of access, can carry significant cost and weight penalties. 

Sensors and their associated cables or wireless communication system and, if applicable, 

on-board diagnostic system have weight and power requirements also which can have 
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significant performance impacts in the case of aircraft. System availability is linked to the 

balance of sensor reliability and detectability and the capability of the system to decrease 

maintenance duration (Hoyle, Mehr, Turner, & Chen, 2007).  

As stated previously, the benefits of ISHM are the abilities to reduce inspection 

length, defer maintenance and migrate to maintenance on demand or CBM (Speckmann, 

2007). All of these items have the end goal to increase operational availability through 

reduced maintenance time. The link between the CBM program and the SHM technology 

is system architecture. Within sectors of industry, there are attempts to define standards 

or common operating practices and to persuade governments and private companies to 

invest in SHM technology to reduce overall maintenance costs. These will in turn enable 

measuring the effectiveness and cost of individual systems. 

Applying ISHM enables CBM in lieu of preprogrammed periodic maintenance 

practices, that is, maintaining only when required instead of when prescribed by 

schedules, thus optimizing maintenance labor (Roach, 2009). All of the SHM 

technologies and resulting modified maintenance programs serve to reduce the total 

acquisition cost of a system with increased availability. System reliability is also cited as 

a reason for the lack of further adoption of the technology. Seaver et al. (2012) state that 

most ISHM systems lack demonstrated reliability in the field beyond estimates which, in 

turn, discourages program managers from investing in the technology for deployable 

systems. To gain user trust in predictions ISHM systems should compile and quantify 

uncertainty to provide some confidence interval around predictions.  
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Processing CBM data can prove cumbersome as well. Depending on the scope 

and size of the system, the ISHM platform can produce terabytes of data every month 

(Seaver et al., 2012). Methods to collect, process, analyze and store this data must be 

accounted for when developing and assessing an ISHM system (Farrar & Worden, 2007). 

While this is a measure to track and be aware of for a system, modeling this falls under 

final design for the system and will not be included in this model. The cost associated 

with the design, development, implementation and maintenance of these systems must be 

accounted for in the ISHM model in order to provide an accurate comparison of the cost 

benefit of the baseline system versus the ISHM/CBM system. 

Model Functionality 

Figure 3 lays out the process flows and functional components of for the baseline, 

no ISHM, aircraft through the models in this research. ISHM architecture is presented in 

chapter 4 and inherent ISHM processes are discussed. The models are designed to 

account for the processes and decisions in the appropriate flows. Following this process 

ensures the ability to capture the required processing times and failures for calculation of 

system impacts.  
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Figure 3. Baseline Activity Diagram 
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In the nominal baseline model in Figure 3 the aircraft are tasked for a mission and then 

proceed to a preflight inspection, mission execution, post flight inspection and routine 

maintenance before returning to the mission queue. Off-ramps can occurs if inspections 

reveal faults that require correction or if there is an in flight emergency (IFE). Following 

the identification of faults, the aircraft receives a detailed inspection to isolate and locate 

the offending component or line replaceable unit (LRU) for repair or replacement, a 

supply requisition is generated and the stock level is checked. If the part(s) are in stock 

they are sent to maintenance to repair the aircraft. If the required items are not in stock, 

they must be ordered and the aircraft is down awaiting supply. Upon repair of the aircraft, 

the system is again checked for damage. If no damage is detected, the aircraft is sent back 

into service, repeating the cycle until the aircraft is retired or destroyed. The ISHM 

enabled CBM architecture is discussed in chapter 4.  

Data Flow  

The schematic outlined in Figure 4 shows the information that is transferred 

between the different system nodes in the ISHM model. The ISHM system updates the 

CBM system with systems health and RULs. This information is then processed by the 

CBM system, which determines maintenance and supply requirements. Supply 

requirements are sent to the supply system and parts statuses are returned. Likewise, 

maintenance windows and the subsystems to be repaired are sent from the CBM system 

to maintenance and maintenance updates the CBM system on status of repairs. All of this 

information is tracked to ensure enough aircraft are available for mission taskings. 
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Figure 4. ISHM/CBM Data Flow 

Viewed in another manner, the flow of information in Figure 4 is decomposed to 

show the sequence of event flows within the model. This flow, shown in Figure 5, depicts 

where information is transferred between model nodes and the result of data queries 

between nodes. Iterative items are shown in the loop boxes and continue during missions 

to ensure updates to system health and processing are populated throughout the system.  
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Figure 5. ISHM/CBM Sequence Diagram 

Model Verification and Validation 

Verification is the process of determining if the model is an accurate 

representation of the architecture and its processes and that those processes contain the 

correct information. The Arena
®

 model in this work was checked against the system 

architectures in Figure 3 and Figure 6 to ensure proper inclusion of processes and 

decision points. Additionally, the data flow in Figure 4 and sequence in Figure 5 dictated 

model information sharing.  

During model development, checks for reasonableness, i.e., inputs map to logical 

outputs, were conducted for individual elements and processes. Data were also output to 
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a spreadsheet at discrete points in the model to ensure logical behavior of the modeled 

parameters. In the process of conducting these checks, small errors in logic and formulas 

were discovered and corrected. Arena
®

 has the capability to animate models, which 

allowed the author to follow entities throughout the model processes to ensure proper 

paths were followed. Further, random distributions were held as fixed values to simplify 

checking of timing and equations throughout the model. Verification of the finished 

model was conducted through checks of outputs with progressively changing inputs to 

verify logical shifts in outputs. 

Validation is process of assurance that the data processed by the model is 

consistent with expected and real-world information and is performed by analyzing 

model simulations. In this work, validation is a difficult task as the systems are 

theoretical and randomly generated as are many of the processes undergone in the model. 

As such, there are no real-world results to compare the simulation data with for validation 

purposes. Therefore, what remains is to validate model assumptions and random 

distributions for processes to ensure their reasonableness. Distributions for model 

processes are meant to represent simple inspection and replacement tasks that can be 

conducted in a timely manner as opposed to an overhaul of an entire aircraft, which 

would require considerably more time. The distributions, therefore, are deemed valid for 

this requirement. Further, the underlying assumptions appear valid and discrepancies are 

annotated and discussed. 
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Summary 

The architecture and evaluation techniques laid out in this chapter establish the 

processes and methods used in the remainder of this research. The establishment of a 

system architecture early in the design process aids in ensuring relevant processes and 

procedures are captured and define inputs and outputs required for successful 

implementation. The remaining chapters of this dissertation detail the research methods, 

results and conclusions relevant to the implementation of a condition based maintenance 

program enabled through integrated systems health management. 
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III. Prognostic Uncertainty 

Chapter Overview 

Across many industries, systems are exceeding their intended design lives, 

whether they are ships, bridges or military aircraft. As a result failure rates can increase 

and unanticipated wear or failure conditions can arise. Health monitoring research and 

application has the potential to more safely lengthen the service life of a range of systems 

through utilization of sensor data and knowledge of failure mechanisms to predict 

component life remaining. A further benefit of health monitoring when combined across 

an entire platform is system health management. System health management is an enabler 

of condition based maintenance, which allows repair or replacement based on material 

condition, not a set time. Replacement of components based on condition can enable cost 

savings through fewer parts being used and the associated maintenance costs. The goal of 

this research is to show the management of system health can provide savings in 

maintenance and logistics cost while increasing vehicle availability through the approach 

of condition based maintenance. 

This work examines the impact of prediction accuracy uncertainty in remaining 

useful life prognostics for a squadron of 12 aircraft. The uncertainty in this research is 

introduced in the system through an uncertainty factor applied to the useful life 

prediction. An Arena
®

 discrete event simulation is utilized to explore the effect of 

prediction error on availability, reliability, and maintenance and logistics processes. 

Aircraft are processed through preflight, flight, and post-flight operations, as well as 
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maintenance and logistics activities. A baseline case with traditional time-driven 

maintenance is performed for comparison to the condition based maintenance approach 

of this research.  

This research does not consider cost or decision making processes, instead 

focusing on utilization parameters of both aircraft and manpower. The occurrence and 

impact of false alarms on system performance is examined. The results show the potential 

availability, reliability, and maintenance benefits of a health monitoring system and 

explore the diagnostic uncertainty. 

Background 

Across military and commercial fleets, aircraft are an example where lengthening 

service lives and budget constraints can adversely affect safety. As a result, more 

frequent inspections are required as service life increases to ensure safety of the users and 

the environment. However, the cost of large scale modifications or replacement in the 

case of hundreds of aircraft is a significant hurdle to overcome in most instances (Shoup 

et al., 2011). The impact of shrinking budgets can also reduce inspection frequency or 

delay needed repairs in favor of only performing mission critical tasks (Roach, 2009). 

Maintenance strategies must change to meet the extended in-service requirements and the 

constraints imposed by shrinking government and industry budgets.  

Condition based maintenance (CBM) is an evolving maintenance concept with a 

goal of reducing maintenance and thus life cycle costs while increasing operational 

availability made possible, in part, by leveraging health monitoring techniques. 
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Department of Defense Instruction (DoDI) 4151.22 defines CBM as “the application and 

integration of appropriate processes, technologies, and knowledge-based capabilities to 

achieve the target availability, reliability, and operation and support costs of DoD 

systems and components across their life cycle,” (Under Secretary of Defense (AT&L), 

May 2008, p. 1-1). Integrated system health management and its impact on performance, 

cost, supply chain as well as traditional maintenance inspections and practices are the 

focus of this research. With the F-35 maintenance and logistics alone projected to cost 

$1.1 trillion over the 55 year life span amid shrinking defense budgets, the need to reduce 

the life cycle cost (LCC) of military aircraft is paramount (Shalal-Esa, 2013). 

Additionally, legacy aircraft may not be fitted with the proper sensors to fully implement 

health assessment leading to costly inspections, in both time and maintenance dollars. 

This reduces operational availability (Ao) and the funds available for other needs. CBM 

is a demand driven maintenance process based on indications of stresses or impending 

failure of a component or system. When appropriately applied, CBM has the potential to 

reduce life cycle cost and increase mission reliability by eliminating unnecessary 

maintenance actions (Butcher, 2000). Ellis (2008) argues that cost-effective systems 

monitoring allows repair actions based on system condition rather than costly time-based 

maintenance. Additionally, maintenance may be forecast for completion that minimizes 

impact on the operational mission of the system. Secondary failures, where one 

component’s failure causes adverse performance or accelerated degradation of 

interrelated components, may also be reduced by implementing CBM as a result of 

prompt repair or replacement of the primary cause of fault. 
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CBM compares data collected from vehicle systems and their components and 

compares that information with a predetermined threshold prior to failure, or to failure for 

some non-critical components, then dictates repairs or replacement of parts. Additionally, 

interim time-based inspections required under the baseline preventive maintenance (PM) 

approach are forgone, or significantly reduced in frequency, in lieu of continuous analysis 

of the aircraft via the integrated systems health management (ISHM) system.CBM 

requires sensor or inspection data to accurately diagnose the condition of a component. 

Manual inspections can prove costly in terms of time to perform if the part requires 

disassembly or removal of other components to observe its condition. Technology exists 

for some, and is under development for other components, to determine wear or 

impending failure conditions in lieu of manual inspections (Glaser et al., 2007; 

Speckmann, 2007). The data from these health monitoring sensors may then be compiled 

to predict remaining useful life. Certainty is not 100%, be it in the interpretation of data 

collected on component condition or in prediction of remaining life based on that sensor 

data. This uncertainty has the potential to lead to poor estimation of component 

condition, which can result in false conclusions about safety of flight decisions and 

ultimately to critical failures. 

Integrated Systems Health Management Enabler 

The benefits of ISHM are the abilities to reduce inspection length, defer 

maintenance and migrate to maintenance on demand with the end goal to increase 

operational availability through reduced maintenance time (Speckmann, 2007). Applying 

ISHM enables CBM as opposed to preprogrammed periodic maintenance practices; that 
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is, maintaining only when required instead of when prescribed by schedules, thus 

optimizing maintenance labor (Roach, 2009). SHM technologies and resulting modified 

maintenance programs serve to reduce the total life-cycle cost of a system and increase 

availability. While this may drive increased acquisition cost of a weapon system or 

aircraft due to the inclusion of health monitoring systems, the goal is to offset the 

increase with reduced operations and maintenance costs over the life of the program. 

Published literature shows the savings potential of ISHM enabled condition based 

maintenance on aircraft life cycle cost:  

 40% for vehicle maintenance (Walls et al., 1999) 

 30% to 50% for fuselage panels (Pattabhiraman et al., 2010) 

 10% electrical components (Scanff et al., 2007) 

 50-80% for the Boeing 777 (Gorinevsky, Gordon, Beard, Kumar, & Chang, 

2005).  

In general, an application project could choose to increase the detection 

capability, accepting a higher acquisition cost with the goal of lowering the overall 

system life cycle cost through more efficient operations and maintenance.  For a given 

detection system, however, increasing the detection capability (e.g., lowering a threshold) 

will come at the expense of a degraded false alarm rate; the two are competing objectives. 

Ultimately, the value of the prognostic system will depend on the achievable balance 

between detectability for safety concerns and acceptable false alarm rates to avoid 

unnecessary and expensive maintenance actions. Aircraft, or other vehicle, availability is 

linked to the balance of sensor reliability and detectability and the capability of the 

system to decrease maintenance duration (Hoyle et al., 2007). 
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It is important to understand that uncertainty will exist in the diagnosis and 

prognosis of system health. Numerous points of entry exist for uncertainty to work its 

way into remaining useful life (RUL) prediction. Component performance data is 

dependent on sensor health and accuracy. It is also difficult to anticipate the exact 

conditions, load, environment, etc, that the vehicle or machine will undergo during 

operation or storage. Quantifying and compiling these uncertainties is a difficult task 

individually and made harder by potential amplifying effects on each other. 

Sankararaman and Goebel (2013) discuss factors of uncertainty in RUL prediction and 

lay out methods to quantify and interpret the sources. They also stress the need to 

accurately determine the uncertainty in the prediction for the prediction to be of use. The 

goal is that the probabilistic estimates of RUL based on real time monitoring allow 

increased time to accumulate on parts, thus increasing the MTBF for the ISHM aircraft 

and generating savings through fewer spares procurements or repair actions. 

Determining the effectiveness of system health monitoring approaches requires a 

method for comparison of techniques. The remainder of this paper discusses modeling 

approaches, evaluation techniques and results of this research. 

Modeling Approaches 

Research into the effects of prognostics on integrated logistics, maintenance and 

aircraft systems frequently neglects the impact of uncertainty on HM model outcomes. 

Rebulanan utilizes a discrete event simulation to represent the F-35 autonomic logistic 

system (ALS) system with a health management system, LRUs, communication system, 

supply, and maintenance systems (Rebulanan, 2000). Rebulanan further evaluates 
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performance with aircraft availability, mission capable and non-mission capable rates, 

and mission reliability. Rebulanan’s model shows sensitivity of the supply wait time to 

the detection lead time for an impending failure and the supply stock levels. This 

outcome is somewhat intuitive in that as the prognosis of an impending failure is detected 

earlier and with greater accuracy, the supply system can plan further in advance, ensuring 

parts are available when required. 

Rodrigues and Yoneyama (2012; 2013) explore the effect of prognostics on spare 

parts inventories for both repairable and non-repairable systems compared with 

conventional supply processes. Both studies, simulated over 15 years each, show cost 

savings for the ISHM enabled system over the conventional one. In their work on non-

repairable items they discuss uncertainty in failures and their impact on supply policy, but 

they do not include the impact of prognostic uncertainty on maintenance operations for 

false alarm adjudication or aircraft operational availability. Similarly, while they do 

address prognostic error in repairable systems they focus on the impact of sparing to 

account for fleet availability without addressing false alarms and how they might drive 

costs. Both works provide an excellent analysis of the cost impact of sparing decisions 

based upon health monitoring information. Out of stock costs are difficult to quantify but 

do impact downtime for supply, which is where the impact is captured in our research 

model. A limitation of the nor-repairable study is that only one item is investigated, 

leaving interactions of multiple components in question.  

Kählert, Giljohanan, and Klingauf (2014) utilize a MATLAB discrete event 

simulation to analyze one Lufthansa A320 component with 100% unscheduled 
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replacement. They utilize process times, reliability, prognostic accuracy, and cost to 

evaluate PHM system performance. Additionally, the use of historic Lufthansa 

maintenance data provides added realism in the research. The research focus only extends 

for two weeks around a replacement, thus leaving out some potential for a false alarm 

condition to exist prematurely. One of their final conclusions is a realistic PHM system 

could save approximately 20% of annual fleet operation costs.  

Model description 

In this research, an Arena
®

 discrete event simulation is utilized to represent a 

squadron of 12 aircraft and their associated mission, maintenance and supply processes 

over a 15 year duration. This model explores the impacts to this squadron in analyzing a 

model containing elements not addressed in the works of section 2. The authors add 

uncertainty not found in Rebulanan’s work with an interaction of multiple components 

missing from Rodriques and Yoneyama.  

Model Components and Architecture 

The initial component failure properties were randomly generated from a 

uniform(250,1000) distribution for parts A-T. These times are then utilized for 

component replacements in the model. Each aircraft is generated and assigned 20 

components with a failure time randomly sampled from an exponential distribution, with 

mean time between failure (MTBF) given in Table 1, and with probability density 

function: 1( ) ,  0
x

f x e for x





  . The exponential distribution is chosen as a 

representative reliability function for the components for simplicity in model calculations 
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of the constant failure rate.  The model can readily accept another failure distribution 

with other components. 

Table 4. Components Failure Times 

Part MTBF (hours) 

A 502 

B 280 

C 775 

D 750 

E 763 

F 364 

G 441 

H 829 

I 769 

J 941 

K 778 

L 363 

M 272 

N 642 

O 696 

P 268 

Q 822 

R 585 

S 996 

T 842 

 

The sampled failure times are considered “truth” in terms of component failure 

times. That is, if the line replaceable unit (LRU) incurs more than the associated failure 

time in hours without being repaired or preemptively replaced as a result of scheduled 

preventive maintenance, overhaul in the baseline case or ISHM indicated replacement in 

the prognostic case, a failure occurs. Aircraft flow through preflight processing and 

mission preparation prior to actually flying an assigned mission. The ISHM system 

performs a scan to determine if the aircraft is anticipated to have enough useful life to 
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complete the mission. Each component decreases its life only during engine running 

operations: taxi, take-off, flying, landing and parking. In this work, it is assumed that 

LRUs operate until failure. These processes are visually depicted in Figure 6. 

After sortie completion, diagnostics are again performed and in the baseline case, 

maintenance is performed as well. ISHM aircraft perform post flight scan and if 

acceptable are released for next flight. Baseline aircraft are inspected and checked for 

LRU preventive maintenance time. If PM is not required, routine maintenance and 

inspections are performed and the aircraft released for next mission. Aircraft are then 

either parked until their next mission or turned for another flight. 

In the maintenance module, the number of indicated failures is recorded and the 

maintenance clock starts. A detailed inspection is performed for both the ISHM and 

baseline cases, though shorter for the ISHM case. False alarms are recorded and in the 

ISHM case if a false alarm threshold over the lifetime of the part is reached, the ISHM 

system undergoes maintenance. The model indicates a false alarm condition if the 

predicted component RUL is less than the “truth” remaining time minus a safety factor 

and the anticipated sortie duration. In the baseline case supply stock is reduced and if not 

in stock the aircraft is grounded until the part arrives. Parts are processed by supply 

(occurs simultaneously with other aircraft operations in the ISHM case) and transferred 

from supply to maintenance. Aircraft are maintained and LRU(s) life characteristics are 

resampled from the failure distribution(s) in Table 1. The aircraft repair is checked and 

the vehicle is routed back into the mission queue. In the ISHM case, if the standby time 

until the next mission is greater than the mean time to perform any outstanding 
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maintenance actions, the aircraft is routed to be maintained so as not to impact mission 

operations. In the baseline case, unless the part is scheduled for preventive maintenance 

the condition is not known thus the need for repair or replacement is unanticipated and 

the aircraft continues normal mission operations. Maintenance actions are performed 

serially on each aircraft, that is, only one inspection or maintenance action at a time, 

continuing until all required actions are complete. This assumption likely over constrains 

maintenance personnel actions, leading to slightly higher maintenance delays, but is done 

for model simplicity and has the same effect on the baseline and health monitoring cases. 

It is assumed that all component inspection times for indicated or actual failures are 

triangularly distributed (20, 30, 45) minutes and LRU replacements triangularly 

distributed (60, 90, 240) minutes. These times were chosen to represent a range of repairs 

and inspections while not portraying items which may require multiple days to maintain. 

Additionally, in this research required personnel for maintenance actions are always 

considered available. LRUs are always replaced when they are serviced. 

Supplies are input into the model at an initial stock level and a reorder point. In 

both the baseline and ISHM cases, the stock level and reorder points are fixed for the 

simulation. The levels are discussed further in section 3.2. Once reorder point is reached, 

the difference between stock level and reorder point is ordered. Time between order and 

delivery is log-normally distributed (2,1) days for all parts. Additionally, a processing 

time upon receipt is incurred. 
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If RUL is within a 10 hour safety factor from failure the aircraft is routed to 

maintenance. If RUL is within a prescribed lead time window, a supply check is 

performed and if parts aren’t in stock they are ordered to meet predicted maintenance 

activities. If RUL is within a defined maintenance window, component service can occur 

if parts are in stock or the aircraft can continue flying missions if there is sufficient RUL.  

Sensor and Prognostics Process 

The ISHM routine begins by computing the remaining useful life (RUL) of each 

component. The RUL prognosis has two components, the diagnosis from the HM system 

and the prediction uncertainty. In this research component diagnostics is taken as perfect, 

i.e., sensor always knows exact health. In new components sensor diagnostics can have 

difficulty detecting the health state, thus providing data that may not be useful. As failure 

becomes more imminent, sensor diagnostics can provide a more exact condition 

diagnosis. The resulting determination leads to component RUL being predicted as: 

   lognormal( , )LRU RUL Diagnosis uncertainty  (1) 

Where Diagnosis is the log mean and equivalent to the true remaining life and, 

uncertainty is the log standard deviation defined in Eq. (2). 

Uncertainty is varied in this research to determine the impact of uncertain 

prognostics on Ao and sortie rates. Uncertainty is calculated as: 

 ln(   )*  uncertainty Part RUL uncertainty factor  (2) 

Where Part RUL is the previous RUL prediction for that part and, uncertainty factor is a 

design variable. 
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This information is sent to the CBM module where maintenance predictions are 

performed. While no specific RUL prognostic technique is used, the technique above is 

utilized to represent compounded error or uncertainty built up in the system. Initially, 

RUL estimation is chiefly impacted by the uncertainty factor, but in section 4.2, 

additional degradation to the system is added to account for sensor diagnostic losses. Eqs. 

(1) and (2) are representative equations developed by the authors to portray the behavior 

of health monitoring systems. They are not intended to mimic the performance of a 

particular system, but to represent the functionality of a monitoring system. The 

uncertainty factor is a representation of the accumulated variability in the prognostics for 

remaining useful life. This work ranges the uncertainty factor from a low of 0, to 

represent perfect prognosis, to a high of 100, which approaches half the MTBF of some 

parts. Examining a range of variability between these end points allows system designers 

to quantify how much uncertainty is acceptable in a health monitoring system before 

selecting one for inclusion on an aircraft. 

The system then enters a decision node where the RUL is compared to a set safety 

factor, which would be a policy decision based on mission requirements. If there is RUL 

above the safety factor and the projected sortie length does not encroach on the safety 

factor, the aircraft is cleared for flight. If the RUL is below the safety factor, the 

component(s) are flagged and sent to maintenance. If RUL is sufficient, the aircraft is 

cleared for the next process. In all, the aircraft is checked prior to mission preparation 

(fuelling and cargo loading), prior to take-off, during flight, and upon landing. If all of 
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these checks are satisfactory the aircraft continues through missions and standby time 

until a maintenance action is required. 

The CBM system preorders parts to meet demands as described above. If the part 

is not in stock, the aircraft is placed in a non-mission capable supply hold until the part 

arrives. Upon maintenance completion, the ISHM equipped aircraft bypasses additional 

check-outs normally performed to inspect work, instead relying on the ISHM system to 

perform them. The aircraft is then released for the next mission tasking.  

Evaluation Parameters 

Establishment of useful performance measures to evaluate the model is essential. 

To that end, metrics currently used to determine aircraft and system performance are 

preferred as a means of comparison. Three categories of metrics, although interwoven, 

are laid out below and are used when discussing the results of this research: availability; 

reliability; and maintenance. 

Availability 

To understand operational availability and why it is a good measure of system 

performance for this model, it is useful to be familiar with achieved and inherent 

availabilities as well.  

Inherent availability (Ai) is the availability of a system operating under an ideal 

support system. This means delays for logistics, administrative delays and preventive 

maintenance time are excluded, leaving only operating time and corrective maintenance. 

Achieved Availability (Aa) adds preventive maintenance to Ai in addition to 

corrective maintenance. Logistics, supply and administrative delays are ignored and those 
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assets are assumed to be instantaneously available when required. Achieved availability 

is determined examining the mean time between maintenance, MTBM, and the mean 

maintenance time (MMT). 

Operational availability (Ao) adds the final piece to the downtime portion of the 

equation. Ao includes logistics, supply and administrative delays to the PM and CM for 

the system resulting in the mean downtime for the system. Operational availability is the 

system availability the user of a system realizes, (ReliaSoft, 2007). Mathematically, 

operational availability is: 

 o

Uptime MTBM
A

Uptime Downtime MTBM MMT MLDT
 

  
 (3) 

Where MLDT is the mean logistics delay time. 

Eq. (3) is not the only way to define operational availability. Pryor (2008) 

discusses methods to calculate Ao seen in Eq. (4) using the uptime/(uptime + downtime) 

definition of Eq. (3), but the definition is slightly different. 

 o

OT ST
A

OT ST TPM TCM TALDT




   
 (4) 

Where OT is the operational time, ST is the standby time, TPM is the total preventive 

maintenance time, TCM is the total corrective maintenance time, and TALDT is the total 

administrative and logistics delay time, equivalent to MLDT. 

Figure 7 shows the components of up and downtimes. This is by no means an 

exhaustive list and further breakdowns are possible, especially in the administrative and 

logistics delay blocks, but for this research these components define the temporal 

parameters. 
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Figure 7. Components of System Usage Time (Pryor, 2008) 

A function of a system’s operational availability, average daily flying hours is a 

measurement of the ability of the squadron as a whole to perform the assigned missions. 

Further, the number of sorties flown per day is a function of the mission requirements, 

but also the performance of the aircraft as well as maintenance and logistics systems. 

Reliability 

In the commercial environment, up and downtimes can also be assigned costs as 

the systems impact revenue generation. Kählert, Giljohanan and Klingauf discuss 

dispatch reliability, or the “ratio of revenue departures without delay or cancellations 

compared to all flights,” (2014, p.1). They go on to summarize commercial aircraft cost 

accounting for delays and cancellations. Downtime has an associated cost beyond 
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maintenance labor in lost revenue. Similarly, uptime has the potential to generate 

revenue, when not in a standby capacity. For military systems, assigning costs to up and 

downtime is problematic as there is no profit to generate and supporting national security 

is difficult to assign a value to. In essence, military aircraft are consumptive, always 

operating at a loss. Policy and research can, however, strive to reduce these consumption 

costs.  

False alarms diagnosed or predicted by the ISHM system drive unnecessary 

maintenance and supply actions as well as placing an otherwise mission capable aircraft 

into a NMC state. These maintenance and supply actions increase the overall cost impact 

of the ISHM system as they are not free. A key requirement for successful deployment of 

an ISHM architecture enabling CBM is a low false alarm rate with reliable detection 

(Ellis, 2008; A. Van Horenbeek et al., 2013). False alarms in the baseline model result 

from CND and RTOK discussed previously. Totals for each of the models will be 

recorded for comparison. Additionally, an increase in false alarms, above a 

predetermined threshold, on an aircraft with an ISHM system will trigger an inspection of 

the ISHM system sensors providing erroneous data and potentially of the ISHM system 

logic itself.  

The ability to tolerate false alarms is a two-fold evaluation. First, the cost 

associated with each false alarm shrinks any cost benefit of the ISHM system over the 

baseline system. Second, too many false alarms can trigger a “cry wolf” attitude towards 

the system or result in wasted time maintaining, or checking the system thus decreasing 

the operational availability of the aircraft and the reliability of the ISHM system. For an 
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ISHM architecture to be effective it cannot trigger excessive false alarms which, in turn, 

trigger maintenance actions on the system. 

Maintenance and Logistics 

Inspection intervals are time-driven processes under the baseline aircraft case and 

are prescribed to monitor systems for indications of damage. They are generally based on 

historic or predicted failure data and are conducted to ensure early indications of failure 

are discovered before they catastrophically fail the system or adjacent components. An 

assumption for this research is that all systems of interest on the aircraft are monitored in 

the ISHM model. If that were not the case time-based, but informed through ISHM 

inferences, inspections would still be required. In this research, the ISHM case only 

requires inspection upon indication of failure or impending failure by the system. 

Therefore, the inspection intervals should be further apart and of shorter duration for 

ISHM than for time-based methods. The preprogrammed PM inspections of the baseline 

are defined based on operating hours. 

Accounting for the required time to repair and inspect aircraft is critical in 

determining the impacts of system changes to downtime and manpower costs. In addition 

to the repair of malfunctioning components, inspections based upon fault indications, 

either in performance or indicated by the ISHM system, drive mission unavailability and 

decrease system performance metrics. A common metric is to measure the required 

maintenance man hours per aircraft flight hour or MMH/FH. This factor can then be 

utilized in forecasting manpower requirements and required downtime-based on mission 

requirements. Similarly, mean downtime (MDT), the average amount of time it takes to 
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return an aircraft to flying status once a fault is indicated, is a commonly used 

maintenance performance metric. 

Supply delay is the time between actual part need and when the supply system 

delivers the part to maintenance and will impact both the baseline and ISHM/CBM cases. 

Non-mission capable supply (NMCS) is the common measure of this supply delay. The 

prognostic CBM case will anticipate failure and sparing requirements further out from 

maintenance demand and allow for advanced ordering if stock levels are inadequate. The 

current baseline process relies on anticipating failures and providing stock levels at 

individual bases or in some cases a central location that can be tasked to deliver spares 

when required. This process increases the logistic footprint by requiring storage facilities 

for materiel that may not be needed for upwards of a year. Managing these spares and the 

facility requires additional resources, manpower and money. “Logistics response time, a 

measure of supportability and an indirect measure of readiness,” (Deputy Under 

Secretary of Defense for Logistics and Materiel Readiness, May, 2008, p.  6-4), drives 

shorter maintenance times and as such impacts supply and maintenance downtime. 

While maintenance policy and cost decisions impact LRU replacement decisions, 

the prognostics capability plays an important role in determining when to repair or 

exchange components. Confidence in the performance of the diagnostics and prognostics 

systems could lead to a decreasing safety factor as to when maintenance occurs. This 

resulting increase in useable time of each part saves money through extended service life 

for the components and reduces the amount of supplies consumed. Capturing the amount 

of useful life lost for the components can quantify the gains that may be achievable. 
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Model Variables 

This research explores the impact of RUL prediction uncertainty on the 

availability, reliability, and maintenance and logistics categories above. Evaluation of the 

model is accomplished through simulation of 15 years of aircraft utilization. Further, two 

design cases are initially utilized in the simulations. The remaining useful life uncertainty 

factor is varied at 14 levels with two false alarm limits at 0 and 10000 and the model 

assessed at each increment. The levels for the FA limit is meant to indicate that at 0, the 

ISHM system is always maintained after a false alarm and at 10000, policy allows nearly 

unlimited false alarms by the ISHM system before requiring repair. These levels are 

found in Table 5. At each uncertainty factor 100 simulations are run to establish 

confidence in the results, and the means of these data are presented. Sensitivity to values 

of FA limit greater than 0 is presented later in this paper once sensor and prognostics 

degradation are considered. Additionally, two simulations of the baseline case with no 

prognostics are run where component stock levels are varied. 

Stock levels for the ISHM case are held to 1 nominally and ordered as predicted 

by the system. In the baseline case, two comparisons are examined, one where the stock 

levels are kept the same as the ISHM case. The other stock level case holds 4 parts in 

stock and reorders when the level drops to 2. This variance of stock level for the baseline 

case makes the process comparable to minimal levels as in the ISHM case and robust 

levels when failure is somewhat uncertain.  
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Results 

No ISHM Degradation Results 

Daily flying hour averages for all simulation runs are located in Table 5. It is 

noted in these data that a decrease of 19.04 flying hours per day occurs over the range of 

uncertainty factors for a FA limit of 0. This decrease is smaller when the FA limit is 

10000, reaching 3.45 hours. This reduction corresponds to 6949 and 1261 hours 

respectively in lost flying each year, the equivalent of removing more than 1 aircraft’s 

missions from the flight taskings in the unlimited case and over 5 aircraft in the 0 FA 

limit case. The last two rows in Table 5 contain performance results of the baseline model 

where the numbers in parentheses represent the stock level and reorder point respectively. 

For the baseline model, the (1,0) supply case yields only 18.36 daily flying hours while 

the (4,2) case achieves 27.94 hours. The chief cause of this difference is attributed to the 

(1,0) case waiting for supplies to be delivered as they are only ordered as needed and 

only 1 item is held in stock. The ISHM cases all benefit from the prognostic capability of 

the ISHM system in ordering supplies to meet requirements. 

A typical measure when examining the maintenance demand of an aircraft is 

maintenance man hours per flying hour. Figure 8 examines MMH/FH for the case where 

all false alarms trigger ISHM system maintenance and the case where FAs in the system 

do not incur ISHM maintenance, merely downtime to adjudicate the alarm does not 

require maintenance. As shown in Figure 8, the 0 FA limit case MMH/FH increases 

linearly as the uncertainty factor increases. This growth results from the number of 

maintenance actions on the ISHM system as every FA triggers ISHM maintenance. 
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Maintaining the ISHM system takes more time than merely adjudicating a false alarm by 

the ISHM system thus the increase in maintenance hours. In the case where FAs do not 

trigger ISHM repair, the MMH/FH grow slowly reaching a maximum of 0.268 vs. 4.198 

for the 0 FA case. Inspection and maintenance times drive the maintenance hours and if 

inspection times were to increase significantly, the number of false alarms shown in 

Figure 9 could change the behavior of Figure 8. Additionally, as the uncertainty factor 

increases more false alarms occur as shown in Figure 9 as does the resulting downtime 

associated with the false alarms observed in Figure 10. For comparison, the baseline 

cases have MMH/FH ratios of 0.546 and 0.549 for the (1,0) and (4,2) cases respectively. 

In the baseline case, time-based preventive maintenance occurs at set intervals versus the 

condition based method employed by CBM driving extra maintenance hours. 

Table 5. Average Daily Flying Hours 

  ISHM False Alarm Limit 

 0 10000 

 Uncertainty 

Factor 

Mean Daily Flying Hours 

 0 35.98 35.98 
 2 35.25 35.26 

 5 34.90 35.00 

 7 34.36 34.92 

 10 33.53 34.86 

 20 30.14 34.37 

 30 27.32 34.10 

 40 24.88 33.85 

 50 22.96 33.55 

 60 21.38 33.25 

 70 19.93 33.15 

 80 18.92 32.92 

 90 17.80 32.62 

 100 16.94 32.52 

Baseline 

(1,0) 

18.36 
Baseline 

(4,2) 

27.94 
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While the MMH/FH numbers are low for an entire aircraft, for a system of 

subcomponents when scaled up it is feasible. For example, the U.S. Air Force C-17 fleet 

operates around 6 MMH/FH (Nelms, 2008). 

 

Figure 8. Maintenance Man Hours per Flight Hour 

Figure 9 illustrates the average false alarms per aircraft per year. The quantity 

increases from 0 for the 0 uncertainty factor, perfect prognosis, case to 101.52 and 196.65 

for the 0 and unlimited FA cases respectively at the 100 uncertainty factor case. As 

observed in the figure, since the amount of time spent in maintenance repairing the ISHM 

system for every FA in the 0 limit case increases as the uncertainty factor increases the 

number of false alarms is lower. It should be noted that this is not a reduction in the FA 

rate, as the prognosis accuracy is not degrading over time for this initial investigation. 

This mostly results from the maintenance time taking away time when the aircraft could 

Baseline (1,0): 0.546 

Baseline (4,2): 0.549 
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be flying and, as noted in Table 5, the mean daily flying hours are nearly double for the 

unlimited FA case.  

 

Figure 9. False Alarms per Aircraft per Year 

While the number of false alarms per aircraft per year is nearly doubled in the 0 

limit case versus the no limit case, FA downtime increases at a considerably higher rate. 

As shown in Figure 10, the average downtime each aircraft experiences per year due to 

FA increases from 0 for the perfect prognosis case to 111.31 hours for the unlimited FA 

case and over 2000 hours for the FA limit 0 case. The increase is attributed to the 

additional maintenance required to maintain the ISHM system at the lower FA trigger. 
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Figure 10. False Alarm Downtime per Aircraft per Year 

Compiling all components of downtime and the number of times the aircraft is 

down for maintenance leads to the mean downtime for an occurrence. As shown in 

Figure 11, mean downtime decreases from 3.24 hours when the uncertainty prognosis is 

perfect to a low 1.09 hours when the uncertainty factor is 100 and FA limit is unlimited. 

This decrease is attributed to the fact that while the aircraft is being removed from service 

more often to adjudicate false alarms as the uncertainty factor increases, the inspections 

do not take as long as the aircraft is quickly returned to operation. MDT for the 0 FA 

limit case grows as the uncertainty factor rises, mostly due to all components requiring 

inspection and sensor repair for each time down. As uncertainty rises, the aircraft is 

brought down more frequently, but more often for a false alarm than maintenance 
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actions. Adjudicating a false alarm through inspection takes less time than a repair, thus 

the downtime is smaller. For the baseline (1,0) case, MDT is 171.82 hours, and for the 

(4,2) case 17.47 hours. The MDT for the (1,0) case is high mainly due to NMCS as there 

is only a stock level of 1 LRU and parts are ordered on demand, not schedule. The other 

major driver for the baseline MDT is the PM process. 

 

Figure 11. Mean Downtime 

At the low end of the uncertainty factor range, the fixed 10 hour safety factor 

imposed on each part accounts for a majority of the lost life each LRU, with the 

remainder mostly coming from the component not being able to safely cover the 

projected sortie duration. As the uncertainty factor increases, the mean life lost per 

component increases as well due to the uncertainty in the RUL prediction necessitating 

Baseline (1,0): 171.82 

Baseline (4,2): 17.47 
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replacement before LRU failure. Additionally, the between mission maintenance window 

check forwards aircraft for LRU replacement or repair if the RUL prediction is within the 

designated maintenance window and parts are in stock. Figure 12 depicts the simulation 

outcome described above, growing from 15.63 hours to 35.40 hours for the uncertainty 

factor 100 case for each FA limit. Taken over the 15 years, the total life lost ranges from 

a low of 144506 hours for the perfect prognostics condition to 321236 hours for the case 

where uncertainty factor is 100 and FA limit is unlimited. This translates to 36.67 years 

of part life lost for the latter case. The mean life lost for each FA limit case is 

approximately equal at each point, thus they are collocated in the figure. This results from 

the fact that while the ISHM system may require more maintenance, the LRU 

components are only replaced as required. Of note is the max total life lost for the 0 FA 

limit case is 207901, occurring at an uncertainty factor of 20. The total life lost then 

continues to drop off as the uncertainty factor rises. This is due to the number of hours 

being flown by the aircraft declining as the uncertainty factor increases, thus not 

requiring LRU replacement as frequently. The lost utilization and cost implications of 

this figure could provide justification for system implementation. Component life lost in 

the baseline case is driven by the time-based preventive maintenance (PM) cycle. In this 

research, the PM cycle is set at 400 hours whereby all components with less than 400 

hours remaining, by time accounting, are replaced, yielding a mean life lost of 376.49 and 

377.06 hours for the (1,0) and (4,2) cases respectively. 
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Figure 12. Mean Life Lost per Component 

False alarms and maintenance hours are important when determining cost, support 

requirements, and system confidence, but users, whether they are military or commercial, 

want to know how often their aircraft are available and when tasked if they can complete 

the mission. Utilizing Eq. (4) to calculate Ao, Figure 13 shows the impact of uncertainty 

factor and FA limit. Operational availability drops from 0.983 for both FA limit levels at 

an uncertainty factor of 0 to 0.754 for the uncertainty factor 100, FA limit 0 case and 

0.969 for the unlimited FA case. The increase in downtime to repair the ISHM system in 

the 0 FA limit case is the driving factor in the decrease in Ao over the uncertainty levels. 

In the baseline cases, Ao is 0.618 and 0.941 for the (1,0) and (4,2) cases respectively. Ao 

is low in the (1,0) case again for the NMCS condition. 

Baseline (1,0): 376.49 

Baseline (4,2): 377.06 
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Figure 13. Operational Availability 

Sensor and Prognostic Degradation Results 

A further examination of the impact of a degrading prognostics capability is 

examined as well. Eq. (2) becomes: 

   ln(   )*  uncertainty degredation factor Part RUL uncertainty factor   (5) 

This degradation factor places an additional uncertainty on the RUL prediction 

given as: 

 
   

  10 *10
 

Part ISHM timer
degredation factor

growth factor

 
   

 
 (6) 

Where growth factor is either 50 or 200 to provide different rates of degradation. 

Referring to Table 1, it is shown that component MTBF is bounded between 250 and 

Baseline (1,0): 0.618 

Baseline (4,2): 0.941 
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1000 hours. Therefore, the impact on RUL uncertainty could grow to nearly the 

component life in the case of part P if left unchecked. The Part ISHM timer is the 

accumulated life on the ISHM components associated with a specific component. The 

timer is reset upon component replacement or when a false alarm limit is reached thereby 

initiating maintenance on the ISHM system. Degradation factor increases as a function of 

the accumulated time on the Part ISHM timer. Thus, the longer the ISHM system is in 

operation, the higher the degradation factor becomes adding to the uncertainty in the 

system. As with Eqs. (1) and (2), Eqs. (5) and (6) are representative equations developed 

by the authors to portray the behavior of health monitoring systems.  

Including the degradation factor in the model as in Eq. (5) shows a false alarm 

limit may be useful in actual aircraft operation. Fixing the error factor at 20, towards the 

lower end of the range, an exploration of the impact of false alarm limits is made. The 

growth factors of 50 and 200, utilized in Eq. (6), are hereafter referred to as high and low 

respectively. These factors correspond to a growth rate of 20 and 5 per hundred hours of 

accumulated time on the ISHM system respectively. The degradation factor adds 

additional uncertainty to the RUL prediction to examine the effect of degrading sensor or 

prognostics capability through use of the aircraft. In the analysis of degradation factor, 

FA limit is the variable of change and is varied from 0 to 100. 

Examining the impact of FA limit on mean daily flying hours for the squadron 

shows that the 0 FA limit case, for which every false alarm triggers ISHM maintenance, 

dramatically reduces the flying hours. This results from the amount of maintenance 

required on the ISHM system depleting available hours to fly missions. These results are 
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shown in Figure 14 and indicate that the low degradation growth rate reduces the flying 

hours from 32.67 at a FA limit of 2 to 31.15 at 100. In contrast, the high growth rate 

drops the daily hours from 32.16 at FA limit 2 to 27.49 at FA limit 100. The difference in 

the magnitude of the declines lies in the fact that the high degradation rate increases 

uncertainty in the RUL prediction, thus driving false alarm occurrence up. That is, when 

the FA limit is 0 and there is a false alarm, the ISHM system is always repaired. When 

the FA limit increases to 2, this allows flights to continue until 2 false alarms are 

incurred, thus allowing increased flying hours for the aircraft. The degradation factor, 

slow deterioration of prognostics system, accounts for the remaining decline in daily 

flying hours. This results from compounded error in the system increasing as the time 

between service lengthens due to the FA limit being raised. 
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Figure 14. Daily Hours Flown 

Figure 8 shows that for a static uncertainty factor of 20 the MMH/FH was 0.165 

and 0.743 for the FA limit 10000 and 0 cases respectively. Figure 15 below shows that 

the high degradation rate reaches 0.74 at a FA limit of 100 and the low rate 0.378. The 

graph does not show the FA limit 0 MMH/FH data of 2.361 for the low and 2.468 for the 

high to allow better visualization of the remaining data. It is observed in Figure 16 that 

the impact of the high growth rate greatly increases the number of false alarms, thus 

increasing the maintenance hours required per aircraft flight hour shown in Figure 15. 

Baseline (1,0): 18.36 

Baseline (4,2): 27.94 
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Figure 15. Maintenance Man Hours per Flight Hour 

As previously mentioned, Figure 16 is perhaps the best indicator of the impact of 

degradation growth rates on aircraft operations. The high growth rate proves true to its 

name as the rate of increase in false alarms per aircraft per year remains higher than the 

low growth rate over the range of FA limits. The number of false alarms increases as a 

result of the degradation factor continually increasing as the ISHM system is not being 

maintained at the shorter intervals a lower FA limit brings.  

Baseline (1,0): 0.546 

Baseline (4,2): 0.549 
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Figure 16. False Alarms per Aircraft per Year 

The impact of the increase in false alarms, and thus downtime, is a decrease in 

operational availability, Ao, as the FA limit increases. Shown in Figure 17, the Ao trend 

follows that of the daily flying hours and inversely the trends of false alarms and 

MMH/FH. Operational availability peaks at a FA limit of 4 for both the high and low 

growth rates. The low growth rate levels off around 0.96 at FA limit 60 while the high 

rate continues a decline to 0.93 at FA limit 100 without leveling off. 
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Figure 17. Operational Availability 

While Figure 16 shows the increased growth in number of false alarms, the true 

utility of the model is in determining the “sweet spot” across the performance curves. 

This is the location where a peak or trough in the curves indicates performance drops off 

on either side and thus this set of factors should be considered for system design. In this 

paper, examining Figure 15 and Figure 17 show a performance drop off at a FA limit of 

4. These results are specific to the set of inputs used in the model. If the time for 

inspection of a failure condition or to repair the ISHM system were changed, the potential 

for a different outcome in FA limits exists. Therein lies the utility of the model in being 

able to change input characteristics and policies to determine system level performance 

metrics. 

Baseline (1,0): 0.618 

Baseline (4,2): 0.941 
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In comparing the sensor degradation case in Figure 14 with the baseline case, 

daily flying hours remain higher than the baseline case across the FA limit range. The 

MMH/FH for the degradation case with low growth rate remains below that of the 

baseline cases, while the high growth rate case is higher than the baseline cases for FA 

limits above 40. As previously discussed, the FA limit “sweet spot” in this model is 4 

thus MMH/FH would be approximately 0.3 and less than the baseline cases. Comparing 

Ao between the baseline and degradation models shows that around the 4 FA limit 

results, the degradation cases are above 0.96 while the baseline cases are 0.618 and 0.941 

for the (1,0) and (4,2) cases respectively. This again shows the ISHM system to provide 

higher performance. Finally, the mission reliability for the baseline cases of 84.85% is 

higher than the ISHM cases, which are below 70% at the 4 FA limit case. Across the 

model metrics the ISHM case with degradation tends towards higher performance than 

the baseline. Depending on the desired performance levels desired for the aircraft 

program managers are left to weigh the performance metrics. 

In the model case where degradation is present, for the uncertainty factor chosen 

it is generally best to set the false alarm limit low. Programmatic policy of cost, 

availability and reliability will drive towards the selection of a proper limit. Additionally, 

changes to degradation factor, i.e., ISHM sensor and prognostic characteristics, and RUL 

uncertainty, prediction algorithm accuracy, can change model outcomes. Cost to 

implement a certain health monitoring technology on the aircraft may outweigh the 

benefit of its inclusion if it drives too many false alarms or too much repair time. 
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Absent the cost impacts of manpower and component replacement, the decision as 

to how much uncertainty in prognostics is an easier proposition. It is shown in the model 

with no degradation that as the RUL uncertainty increases, most performance 

characteristics are adversely impacted. The comparison of baseline to ISHM cases shows 

the potential advantages implementation of health monitoring and condition based 

maintenance. The test for program managers then becomes selecting the appropriate 

system characteristics to meet overall aircraft fleet performance and cost metrics. 

Conclusion 

This research shows employment of an ISHM system supporting CBM can 

produce system performance greater than baseline systems. The main contribution of this 

effort is as a simulation tool to compare sensing options and examine their impact on 

desired performance factors. The ability to input ISHM system and aircraft characteristics 

and investigate alternative approaches to monitoring and maintenance makes this tool 

useful in program decisions on whether or not to implement monitoring techniques. 

While determining causes of system uncertainty is outside the scope of this research, 

quantifying the impact of the uncertainty is demonstrated. As a system designer it is 

important to note, as this research shows, the amount of uncertainty in your system, 

particularly in the prognostics. This uncertainty could be mitigated with better sensors, 

techniques or processing algorithms. Further, the designer should seek to minimize either 

the number or false alarms the prognostic system produces or set an appropriate limit on 
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false alarms to minimize the impact of additional inspection time to adjudicate system 

condition. 

As cost is not included in this work making a true comparison among options is 

difficult. A program manager must weigh the technology costs to achieve the 

performance observed in the model and compare those with system objectives. This task 

becomes easier if these variables can be explored across a range of scenarios as this 

research provides.  

Future work in this research will explore the impact of cost, supply factors and 

manpower requirements.
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IV. Integrated System Health Monitoring Impact on Non-Repairable Component 

Supply Methods 

Chapter Overview 

From on-board automotive diagnostics to real-time aircraft state of health, the 

implementation of health monitoring and management systems are an increasing trend. 

This research analyzes the impact of a health monitoring system on a squadron of 

aircraft. Flight, maintenance and logistics operations are stochastically modeled to 

determine the impact of program decisions on supply metrics. An Arena
®

 discrete event 

simulation is utilized to conduct this research on 20 components on each of the 12 aircraft 

modeled. Costs and availability are recorded for comparison across three sparing 

scenarios to include economic order quantity for baseline and health monitoring cases 

and a just-in-time health monitoring set of simulations. Finally, the different 

methodologies are compared and discussed as a trade-space for programmatic decisions. 

Introduction 

The development of vehicle health monitoring systems enables a focus on 

condition based maintenance in lieu of time-based preventive maintenance. With 

increased knowledge about vehicle systems gained through data collected by health 

monitoring systems, logistics operations too should be considered. In (Hess & Fila, 2002; 

Hess, Calvello, & Dabney, 2004) Hess et al. discuss the potential benefits of informed 

logistic systems enabled by prognostics and health management systems, in particular the 
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autonomic logistics information system (ALIS) of the F-35 fighter. With the development 

and fielding of health monitoring systems on a range of vehicles, taking full advantage of 

the information collected is an evolving task. 

Health monitoring efforts can be integrated with the logistics chain to optimize 

maintenance actions with supply requirements. The future goal of integrated systems 

health management and condition based maintenance (ISHM/CBM) integration is to 

yield operations and sustainment (O&S) savings (Carnero Moya, 2004). 

The General Accountability Office (GAO) has conducted several audits of the 

Department of Defense (DoD), with findings ranging from required items routinely 

missing from inventories to enormous on-hand stock. Additionally, they found unneeded 

parts on order accounting for billions of dollars in unneeded parts and operational rates 

well below goals (Government Accountability Office, 2001; Government Accountability 

Office, 2007).  Reasons for parts shortages range from inadequate forecasting, repair and 

manufacturing issues, poor replacement part reliability, and contracting problems. In one 

extreme example, demand for an engine bolt was projected at 828 units when actual 

requirements were over 12,000 in a single quarter (Government Accountability Office, 

2001).  This issue was still present in 2010 when the Logistics Management Institute 

conducted a review of DoD logistics citing “inaccurate demand forecasting as a primary 

cause for the military services’ inability to align inventory levels with current demands” 

(Atchley et al., 2010, p. 2-5). Implementing ISHM/CBM systems on a broad range across 

the services would increase the forecasting capability and provide near real time insights 

into requirements, both existing and in the near future. Between 2002 and 2005, Air 
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Force spares shortages were between 6 and 8 percent of total requirements, averaging 

over $1 billion in shortfalls (Government Accountability Office, 2007). 

A shortage of spares is not the only issue facing the Air Force. As cited by the 

GAO, “the value of Air Force on-order inventory not needed to support required 

inventory levels... represent[s] an average of 52% ($1.3 billion) of its on-order inventory” 

(Government Accountability Office, 2007, p. 9). Between 2002 and 2005, 65% of on-

hand inventory—amounting to $18.7 billion—was not required for projected use rates. 

Further compounding the unneeded on-hand inventory is that some items have a shelf life 

that requires disposal or refurbishment after a set amount of time. The prognostics 

capability of ISHM systems can increase the reliability of spares forecasting and, 

depending on projected use rates, keep sparing purchases within DoD budget timelines. 

The remainder of this paper is organized as follows. Section 2 reviews relevant 

literature on health monitoring and supply and discusses supply concepts. Section 3 

introduces the model formulation and measures of merit. The results for the different 

methodologies utilized in this research are provided in Section 4. Finally, section 5 

provides a conclusion for the work and discusses future efforts. 

Background 

This section reviews relevant literature and discusses concepts behind model 

formulation.  
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Cost Accounting 

The cost of ordering replacement parts can be decomposed into two elements, 

administrative cost and part cost (Sherbrooke, 2004). 

 *OC K P Q   (7) 

where OC is the order cost, K is the fixed administrative cost per order, P is the 

component cost, and Q is the order quantity. 

Once the ordered spares are delivered to the customer, holding costs are then 

accrued. These costs are related to the storage, storage buildings and upkeep, spares 

inventorying and maintenance, insurance, etc. These costs are generally calculated as a 

percentage of the per unit part cost and are determined either over discrete time periods 

or continuously as in Eq. (8). The cost of deterioration is also included in holding cost, 

but is not addressed in this research. Shah, Soni, and Patel (Shah, Soni, & Patel, 2013) 

propose a method to include the deteriorating spares cost in the holding cost equation. 

  
0

*

T

HC H SL t dt   (8) 

where HC is the holding cost, H is the part holding cost per time and SL(t) is the stock 

level held in inventory at time t (Rodrigues & Yoneyama, 2012). 

In the commercial arena, there is a tangible cost for not having needed stock on 

hand when required, known as a stockout cost, such as lost revenue for a flight or halting 

of production. In the government or military operating environment, where revenue is not 

a consideration, the impact is more likely in the form of the system being labeled non-

mission capable for supply (NMCS). Depending on the spare parts strategy used for the 
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system, a NMCS could result in contractual penalties to suppliers (Anderson, Fitzsimons, 

& Simester, 2006; Kennedy, Wayne Patterson, & Fredendall, 2002). Company 

reputations as well as relations with customers are also indirect costs of stockout 

conditions (Rodrigues & Yoneyama, 2012). Sustained high levels of NMCS aircraft may 

also require a larger fleet to meet mission requirements. 

Economic Order Quantity 

The concept of an optimal or economic order quantity (EOQ) was introduced by 

Harris in 1913 (Harris, 1990). Shown in Eq. (9), this model is concerned with a reorder 

point, R, and an order quantity, Q, yielding an (R, Q) model. The reorder point is 

determined based on the desired safety stock and order lead time. The economic order 

quantity is determined by, 

 2* * /Q D K H  (9) 

where Q is the quantity of spare parts to be purchased when a new order is placed, D is 

the average demand per unit of time, K is the administrative cost of placing an order, and 

H is the holding cost per unit per unit of time held in inventory (Sherbrooke, 2004). 

While a traditional (R, Q) supply methodology augmented by ISHM projections 

could work, as shown by Rodriguez and Yoneyama (2012), a just-in-time approach may 

work as well. 

Prior Models 

Kählert, Giljohanan and Klingauf (2014) use a MATLAB discrete event 

simulation to analyze a single commercial component with 100% unscheduled 
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maintenance. They evaluate health monitoring system performance and conclude a 

potential annual savings of approximately 20% is possible. 

Rebulanan models the F-35 ALIS system with a discrete event simulation 

containing LRUs, communication system, supply, and maintenance systems (Rebulanan, 

2000). Rebulanan evaluates model performance with aircraft availability, mission capable 

and non-mission capable rates. The simulation shows sensitivity of supply lead time to 

the detection lead time and stock levels. 

Rodrigues and Yoneyama (2012; 2013) examine the impact of ISHM prognostics 

on stock levels for both repairable and non-repairable systems. These models are 

compared with a conventional supply system. These studies both indicate potential cost 

savings for a prognostic system versus a conventional supply process. The non-repairable 

study includes only one item with a fixed supply lead time. This limitation leaves the 

interaction of multiple components and variable lead times in question. 

Methodology 

The research methodology used in this work builds upon Vandawaker, Jacques, 

and Freels (2015). The Arena
®

 discrete event simulation processes a squadron of 12 

aircraft through daily operations to include: flying, take-offs and landings, inspections, 

maintenance, supply and health monitoring activities. Each simulation takes the aircraft 

through 15 years of operation and consists of 100 runs. The architecture for the ISHM 

model processes is found in Figure 6. This figure depicts the flow of information and 
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aircraft through system operations. System processes include flight operations, ISHM 

diagnostics and prognostics, CBM order processing, and maintenance and supply actions. 

Figure 18. ISHM System Architecture  

A baseline model is run as a comparison with time-based preventive maintenance 

and (R, Q) stocking policy. An ISHM model is also run with an (R, Q) policy based on 

Rodrigues and Yoneyama (2012) where the reorder point is adjusted based on need 

predicted by the ISHM system. These are both compared to a supply system operating 

nearer to a just-in-time delivery program. 

Just-in-Time Logistics 

Hess and Fila ( 2002) discuss the ability of health monitoring systems and 

automated logistics to enable just-in-time (JIT) inventory methods. There are, however, 
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conflicting views regarding the efficacy of just-in-time sparing. Bragalia, Grassi, and 

Montanari ( 2004) cite just-in-time sparing as “the most desirable approach,” but stress 

good integration between supplier and customer. Kennedy, Patterson, and Fredendall 

(2002) cite JIT sparing as a desirable option for predictable demand items, while also 

stating that JIT may not be a good option when demand is unpredictable. Huiskonen 

(2001) also suggests a strong relationship between the supplier and customer is necessary 

to ensure efficient and effective inventory management if JIT parts management is 

chosen. 

In this work, ensuring adequate notification time prior to component need is 

accomplished through a daily analysis of projected component needs. This lead time is 

shown in Eq. (10) and includes factors to mitigate the risk of a stockout condition prior to 

component need by maintenance, 

 SF MW JIT factor   _Part RUL    (10) 

where SF is the component safety factor, MW is the maintenance window to make 

preemptive repairs, JIT factor accounts for supply lead time, and Part_RUL is the 

remaining useful life of the part in question. 

This research used the methodology above for just-in-time supply with order 

windows of 1, 3 and 5 days across the simulation runs. 

The modeling assumptions for this work are as follows: 

 Components are non-repairable; 

 Components do not degrade on shelf; 

 Cost of money is constant across simulation time; 

 No change in delivery time distribution over simulation; 
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 No cost penalty for backorder; 

 Cost of supplies remains constant; 

 There is no discount for large quantity order; 

 (R, Q) model unique for each part; 

 If a stockout condition occurs before order is received, aircraft is NMCS until 

part(s) arrive; 

 Each order incurs a fixed administrative cost, K, regardless of ordering 

process; 

 A holding cost, HC, is incurred annually for each unit in inventory; 

 Enough maintenance personnel are available to complete tasks without delay. 

Model Components and Architecture 

Each aircraft has 20 components, denoted A-T, with failure times randomly 

sampled from an exponential distribution, with a given mean time between failure 

(MTBF), and with probability distribution function: 1( ) ,  0
x

f x e for x





  . 

In the baseline case, unless the part is scheduled for preventive maintenance, the 

condition is not known; thus the need for repair or replacement is unanticipated and the 

aircraft continues normal mission operations. Maintenance actions are performed in 

parallel on each aircraft. All part inspection times are in minutes and are triangularly 

distributed (20, 30, 45). LRU replacement times are also in minutes and triangularly 

distributed (60, 90, 240).  

Supplies are input into the model at an initial stock level and a reorder point. In 

the baseline case, the reorder point and economic order quantity are fixed throughout the 

simulation. The baseline reorder point is two for all components, leaving a small safety 

stock to lessen the probability of running out of spares before the next need. In the ISHM 
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EOQ case, the order quantity, Q, is fixed, but the reorder point, R, varies based on 

predicted need from the ISHM system prognostics. In the just-in-time cases, an initial 

stock level of five is assigned and the ISHM prognostics decide when and what quantities 

of parts are ordered. The ordering system for the just-in-time cases scans all aircraft daily 

and determines the required number of each component over a certain lead time to need, 

shown in Eq. (10), and orders are made at a set interval of days to meet the demand. EOQ 

is not considered in the just-in-time cases. Supply lead time is log-normally distributed 

(5, 2) days between delivery and receipt for all parts. 

The remaining useful life (RUL) prognostic technique used in this research takes 

into account sensor degradation and inherent uncertainty in the system as described in 

Vandawaker (Vandawaker, Jacques, & Freels, 2015). The health monitoring system 

orders spares to meet demand as described in section 2. If a component is in a stockout 

condition, the aircraft becomes non-mission capable for supply awaiting needed part(s).  

Evaluation Parameters 

Two categories of metrics are applicable to the results of this research: availability 

and cost. 

Operational availability (AO) includes logistics, supply and administrative delays 

to preventive and corrective maintenance for the system resulting in the mean downtime 

for the system. Operational availability is the system availability the user of a system 

realizes (ReliaSoft, 2007). Mathematically, operational availability is: 

 o

Uptime MTBM
A

Uptime Downtime MTBM MMT MLDT
 

  
 (11) 



96 

 

Where: MTBM is the mean time between maintenance, MLDT is the mean logistics 

delay time, and MMT is the mean maintenance time. 

Non-mission capable supply (NMCS) is the time between component need by 

maintenance and when the part arrives in maintenance. ISHM/CBM’s prognostic ability 

can predict impending component failure and establish sparing requirements in advance 

of maintenance requirements, ordering spares if stock levels are inadequate. The baseline 

process relies on predicted failure rates and providing stock levels to meet anticipated 

demands. This process increases the logistic footprint by requiring storage facilities for 

materiel that may not be needed for upwards of a year. Managing these spares and the 

facility requires additional resources, manpower, and money. Holding cost is another area 

of interest as it drives facility and manpower requirements. 

Results 

The data presented here shows the impacts of part ordering based on projected 

need of all aircraft over the duration in Eq. (10). Additionally, EOQ models with both 

ISHM and baseline architectures are provided for comparison. 

Figure 19 shows the impact of the supply ordering methodology. It is observed 

that as the number of days between JIT orders increases, the yearly average NMCS hours 

per aircraft increases as well. The increase is attributed to variability in aircraft usage and 

supply delivery time over the period between ordering and actual receipt of the parts. The 

baseline case with a (R, Q) ordering scheme for spare parts yields a yearly NMCS rate 

per aircraft of 57 hours. This baseline result represents a 26% lower rate than ordering 
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parts every 5 days, but a 90% increase over the 3 day ordering schedule and an 850% 

increase over daily ordering. Notably, the ISHM EOQ case has the lowest annual mean 

NMCS time, less than 4 hours per aircraft. The high supply availability is attributed to the 

on-hand stock kept versus the JIT method and the forward looking capability afforded by 

the ISHM prognostics. 

 

Figure 19. NMCS Hours per Aircraft per Year 

While it may be desirable to choose a methodology with the lowest NMCS rate, it 

does not come without an accompanying cost. Shown in Figure 20 below, increased 

holding cost is a trade-off of a low NMCS rate. Holding cost decreases as the order 

frequency increases. This increase is a direct result of spares being in stock for a longer 

duration awaiting installation on the aircraft. In the baseline case, mean yearly holding 

costs are $106K. As shown in Figure 20, this represents a 104% increase over daily 

ordering, a 171% increase over 3 day order frequency, and a 216% increase over 5 day 
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ordering. While the holding costs may not appear to be a large value in absolute terms, it 

must be noted that these costs are only for 20 components in a fleet of 12 aircraft at one 

operating location. When scaled up to thousands of parts and hundreds of aircraft, and 

operating at locations around the world, these costs can be sizeable. 

 

Figure 20. Holding Cost 

As discussed in section 2, administrative order costs are those costs associated 

with the processing, shipping and handling of an order above the cost for the actual 

part(s). As shown in Figure 21, the administrative costs for the just-in-time delivery 

method are considerably higher than for the EOQ schemes for both the baseline and 

ISHM cases. This results from the fact that orders are being placed much more frequently 

to meet demand as the stock level for the JIT case is kept to only what is projected over 

the next several days of flying. The EOQ cases take into account economic factors of the 

supply process to keep overall cost low, at a higher overall holding cost and stock level. 
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If JIT administrative costs can be brought down through contracts or arrangements with 

suppliers, then the JIT system could be more competitive with the EOQ ordering scheme. 

 

Figure 21. Administrative Cost 

Figure 22 represents the total annual supply cost for each scenario; this includes, 

holding costs, administrative costs, and part costs. Observed in Figure 21, administrative 

ordering costs account for the majority of the total supply cost differences. While the 

baseline cost has the smallest annual cost, it is only part of the picture. When 

maintenance costs are included in Figure 23, the baseline case is no longer the lowest 

cost. Further, when considering Figure 24 and Figure 25, the baseline case has the lowest 

operational availably and six fewer daily flying hours across the 12 aircraft. Six flying 

hours per day is equivalent to requiring two fewer aircraft in the ISHM cases for 

comparison. 
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Figure 22. Total Supply Cost 

Summing total supply costs along with the direct maintenance costs, actual 

maintenance personnel inspecting or replacing parts on aircraft, yields the total cost 

shown in Figure 23. This comparison shows a spread of approximately $500,000 

annually across the model cases. It is noted that the maintenance cost for the baseline 

case is 2.5 times higher, resulting from fixed timed based preventive replacement versus 

the condition based replacement under the ISHM logic. 
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Figure 23. Total Cost 

Operational availability is of concern for most systems, and aircraft are no 

exception, whether commercial carriers or military transports. If aircraft aren’t available, 

the mission either doesn’t get accomplished or it is delayed, costing money and/or 

reputation. Figure 24 shows the impact of the supply methodologies in this research. The 

baseline case shows the lowest operational availability resulting primarily, as mentioned 

above, from additional time-based maintenance and inspections. Ao for the ISHM cases 

remain between 0.97 and 0.98 for all the scenarios, resulting from fewer required 

maintenance activities. Fewer maintenance activities also means more time to conduct 

flying operations. Shown in Figure 25, the daily flying hours for the ISHM cases are 

higher than for the baseline case. 
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Figure 24. Operational Availability 

While cost is a chief consideration of the operation of most systems, it is not the 

only concern or measure of merit. Selection of any system requires a balance among 

often competing objectives. In this research, cost and availability or flying hours are 

somewhat diametric parameters. While supply costs for all ISHM cases are higher than 

the baseline, it is not the only consideration. Management must weigh the savings 

potential for the supply methodology chosen with the need fewer aircraft to accomplish 

the same mission. So while status quo of the baseline system shows a savings of 17% 

annually, the ISHM cases can provide better Ao and equivalent flying hours with two 

fewer aircraft. If the cost savings of removing two aircraft and the cost to instrument and 

implement ISHM across the remaining aircraft is less than the baseline case, the 

economic case is made to implement ISHM. Additionally, if the two additional aircraft 
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are kept as well, new missions could be accepted to increase productivity and usefulness 

of the systems. 

 

Figure 25. Daily Flying Hours 

Conclusion 

This model is meant as a planning and design tool to study the impact of ISHM 

capabilities, maintenance processes, and spares management considerations. Weighing 

the impacts of simulation outputs and management philosophies with cost and 

performance objectives is left to program managers to determine the appropriate level of 

service required. 

The cases laid out above provide an example of the capability of integrated 

system health management enabling condition based maintenance to provide a 

competitive cost to traditional aircraft operations. The tool developed by the authors 

provides insight into the trade-space of health monitoring requirements, sparing decisions 

and maintenance operations. If the administrative cost of just-in-time sparing can be 



104 

 

reduced, it is possible to compete with a modified economic order quantity sparing 

system. Additionally, these are fictional cases and as discussed by numerous authors, the 

truth likely lies somewhere in between (Braglia et al., 2004; Carnero Moya, 2004; 

Huiskonen, 2001; Kennedy et al., 2002; Wheatley, Gzara, & Jewkes, 2015). 

The results of this research show that switching from a baseline EOQ system to 

and ISHM EOQ system can provide cost savings, absent the initial investment of the 

health management system. The tool and simulation outputs are then useful in 

determining if the long-term performance increases of the ISHM system balance out the 

additional upfront cost of implementation. 

The next step in this research is a study of maintenance manning decisions based 

on health monitoring inputs. Further study of this area of interest should also include 

repairable systems and their impact on the supply chain and manning. 
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V. An Examination of System Health Monitoring Impact Non-Repairable 

Component Maintenance Manning 

Chapter Overview 

Reductions in operating budgets are forcing many companies and militaries to 

consider reducing manpower, in particular maintenance personnel. Combined with longer 

service lives for aircraft and other systems, maintenance and operations processes must 

be reconsidered. One research and development method to support the above 

considerations is health monitoring systems. The majority of published research efforts 

focus on health monitoring techniques and technologies, leaving others to determine the 

maintenance and logistics impact on the systems. This research utilizes an Arena
®

 

discrete event simulation to examine a squadron of 12 military cargo aircraft, monitoring 

20 components on each, equipped with health monitoring systems. The impact of health 

monitoring on maintenance manning decisions and system performance is studied. Data 

presented for numerous manning levels show potential cost and performance trade-offs. 

Additionally, a case study exploring the impact of two limited manning levels is 

presented. The value of this work is in showing the ability of health monitoring systems 

to affect condition based maintenance decisions. Additionally, the development of trade-

spaces within operating environments is demonstrated along with the ability to conduct 

cost benefit analyses. 
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Introduction 

Maintenance has evolved over time from a “fix it when it breaks” policy towards 

the increasingly popular condition based maintenance programs. Rising costs, longer 

service lives and reduced manpower has driven a proactive approach to maintaining 

systems. The reactive or corrective maintenance approach of many systems forces either 

a costly spares stockpile to prepare for all possible failures or waiting for replacement 

parts to arrive resulting in zero operational availability (Amari et al., 2006). One of the 

first advancements in maintenance practice was to establish regular inspection and 

preventive maintenance (PM) intervals. This technique analyzed various forms of system 

performance data to determine appropriate times to inspect and replace components 

(Walls et al., 1999). This PM approach benefits in reduced catastrophic failures at the 

expense of more maintenance cycles and higher maintenance cost (Deputy Under 

Secretary of Defense for Logistics and Materiel Readiness, May, 2008). Unanticipated 

failures still occur outside the preprogrammed maintenance windows and must be taken 

into account. Further, PM subjects the system to unnecessary “repair” based on the 

required schedule for the system. The unneeded maintenance adds extra expense to the 

system since the component may have had remaining useful life. Moreover, the 

probability of failure can increase as damage often occurs during maintenance actions.  

Another approach to system maintenance is the concept of selective maintenance, 

whereby a subset of actions are performed from a group of proposed maintenance tasks 

(Iyoob et al., 2006). As Iyoob, Cassady, and Pohl (2006) point out, a majority of studies 

into maintenance practices ignore budget limitations, manpower or time constraints, 
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which is where selective maintenance can assist in determining what actions should be 

taken to maximize the available resources. They present logic for determining 

maintenance actions when “it may be impossible to make all possible repairs before the 

next mission.” The selective maintenance process can affect all maintenance approaches, 

but repair driven by material state afforded by condition based maintenance (CBM) 

allows for the management of downtime and resources. CBM and other predictive 

maintenance programs have further evolved from preventive strategies to actively or 

passively analyzing system health and forecasting remaining life. 

Much research on health monitoring systems is focused on obtaining system or 

component states of health and predicting remaining useful life (RUL). These works 

generally provide estimates of savings in maintenance based upon the ability to utilize 

parts longer before replacement or through the elimination or reduction of inspections to 

determine materiel condition: 

 40% for vehicle maintenance (Walls et al., 1999) 

 30% to 50% for fuselage panels (Pattabhiraman et al., 2010) 

 10% electrical components (Scanff et al., 2007) 

 50-80% for the Boeing 777 (Gorinevsky et al., 2005).  

Lacking in these studies is the impact an integrated system health management 

(ISHM) approach could have on maintenance manning decisions. If inspections are no 

longer needed or occur on a less frequent basis, are the personnel devoted to time-based 

inspections and repair needed at all? What needs to be addressed to fully understand the 

impact of these works are potential savings through a reduction or realignment of 
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maintenance manpower. This paper lays out a study of the implications of integrated 

systems health management on maintenance manning levels and the associated cost and 

aircraft availability impacts. 

Background 

Condition based maintenance, when appropriately applied, can reduce the life 

cycle cost of a system. Ellis (2008) argues that cost-effective systems monitoring allows 

repair actions based on system condition rather than costly time-based maintenance. 

Additionally, maintenance can be forecast for completion at a time, likely between 

projected flying sorties, that minimizes impact on the operational mission of the system. 

Under a CBM paradigm, interim time-based inspections, required under the baseline PM 

approach are forgone in lieu of a continuous analysis of the aircraft via the ISHM system. 

Maintenance Manning 

While this work does not propose a new technique to optimize maintenance 

manning, it does seek to utilize tools and modeling to show the impact of a health 

monitoring system on maintenance activities. That said a review of relevant maintenance 

optimization and planning literature is still insightful. 

Sherif (1982) provides a good review of over 800 articles in which he defines 

eight aspects of reliability and maintainability that methods fall under. Additionally, 

Sherif surmises that system design and evaluation must consider both availability and 

performance criteria to meet the goal of maximizing profit and availability while 

minimizing cost. Most research however, deals with failing systems and neglects the 
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prognostics capability of ISHM based systems driving CBM (Scarf, 1997) (Huynh, 

Barros, & Bérenguer, 2012)(Khac Tuan Huynh, Barros, & Berenguer, 2012). Chilcott 

and Christer (1991) provide an examination of the impact of CBM on manning in coal 

operations assuming perfect diagnostic capabilities in the health monitoring system. 

Further, Chilcott and Christer find that even small downtime savings can provide large 

financial benefits. Mahulkar et al. (2009) present a study of manning based on a system 

of systems in a naval environment that while not specifically focused on condition based 

maintenance, does include the principles of actions based on component or system states. 

Their study showed intelligent maintenance, i.e., sensor systems, can reduce maintenance 

manning requirements and increase efficiency.  

Dekker (1996) points out that while a number of mathematical approaches have 

been proposed to approach maintenance optimization, none are as straight forward as the 

economic order quantity methods used in supply optimization. He goes on to say that 

most maintenance problems require software and models to predict gains in maintenance 

methods and it becomes more of an art than a pure science. The key then becomes 

adequately and accurately measuring the model outputs to gain insight into the 

methodology. 

Maintenance Metrics 

In order to properly measure system and model performance, metrics must be 

established and defined across the range of model outputs. First, non-mission capable for 

maintenance (NMCM) is an aircraft state where the vehicle is operationally incapable due 

to maintenance requirements. The maintenance man-hours per flying hour (MMH/FH) 
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metric measures the effectiveness of maintenance personnel and the ease with which a 

system can be repaired. Another key metric in determining maintenance efficacy is the 

mean time to repair (MTTR) a system, that is, the total maintenance elapsed time divided 

by the number of maintenance actions (Defense Acquisition University, 2012). 

      
                      

                             
 (12) 

Operational availability (AO) is defined as the system availability the user of a 

system realizes (ReliaSoft, 2007). Mathematically, operational availability is given as: 

 o

Uptime MTBM
A

Uptime Downtime MTBM MMT MLDT
 

  
 (13) 

Where MTBM is the mean time between maintenance, MMT is the mean maintenance 

time, and MLDT is the mean logistics delay time. For the purposes of this research, 

MMT and MTTR are assumed to be equivalent. 

Methodology 

Utilizing the military aircraft model developed in (Vandawaker, Jacques, & 

Freels, 2015) and (Vandawaker, Jacques, Ryan, Huscroft, & Freels, 2015) by 

Vandawaker et al., this research explores the impact of health monitoring systems on 

maintenance manning. They compare a baseline squadron of aircraft, no ISHM, with the 

same squadron with ISHM implemented, examining false alarms and availability impacts 

in addition to cost. Further, they explore the impact of ISHM on economic order quantity 

and just-in-time supply methods. The just-in-time supply methodology from 

(Vandawaker, Jacques, Ryan et al., 2015) is utilized for stocking components in this 



111 

 

research. These works compared ISHM systems to baseline systems to show possible 

gains through the use of health monitoring technology. This research extends the 

previous modeling approach to study the impact of maintenance manning levels on a 

system equipped with health monitoring systems. The time-based inspections and 

preventive maintenance in a baseline or non-ISHM equipped aircraft are replaced with 

computer scans of sensor data which are then used to predict RUL and forecast 

maintenance. 

This work does not attempt to optimize maintenance manning, but to show the 

impact of an ISHM equipped aircraft squadron on manning levels. The effect of 

maintenance personnel levels on system performance is only observed in relation to the 

direct maintenance on the 20 unique components modeled on each of 12 aircraft in this 

work. This information allows planners to determine the maintenance requirements and 

allocation of personnel, or fractions thereof, to the direct support of the researched parts. 

For each of the twenty components it is assumed that the time between successive 

failures follows an exponential distribution. 

The ISHM system produces prognostics for RUL based upon its calculations from 

system diagnostics. There are two components in the RUL, diagnosis from the health 

monitoring system and prediction uncertainty. In this research component diagnostics is 

taken as perfect, i.e., sensor always knows exact health. With many health monitoring 

techniques, the closer a component is to failure, the better uncertainty can be quantified 

for the diagnosis of condition (S. Sankararaman & Goebel, 2013). This leads to the line 

replaceable unit (LRU) RUL given as: 
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   lognormal( , )LRU RUL Diagnosis uncertainty  (14) 

Where Diagnosis is equivalent to the true remaining life and uncertainty is defined in Eq. 

(15). 

   ln(   )*  uncertainty degredation factor Part RUL uncertainty factor   (15) 

where Part RUL is the previous RUL prediction for that part and, uncertainty factor is a 

design variable. The degradation factor places an additional uncertainty on the RUL 

prediction given as: 

   10     / 20degredation factor Part ISHM timer   (16) 

Where, Part ISHM timer is the accumulated life on the health monitoring 

component associated with a specific component. The leading 10 in the equation 

represents a fixed initial degradation while the 20 provides a representative increase in 

degradation as life, or wear, incurs on each part respectively. As shown above, 

degradation factor increases in direct relation to the accumulated Part ISHM time. The 

effect of the degradation factor on RUL uncertainty is a gradual increase in the 

accumulated uncertainty for a particular component. When a component is replaced or 

reaches a limit in the number of false alarms, thus triggering ISHM maintenance, the 

ISHM part timer is reset (Vandawaker, Jacques, & Freels, 2015). 

In this research, components are non-repairable, that is, they are replaced upon 

failure or an indication from the ISHM system. Upon indication of impending failure by 

the health monitoring system, the aircraft is brought into maintenance for inspection to 

adjudicate if the indication is real or a false alarm. The times to complete an inspection 

for all components are triangularly distributed (20, 30, 45) minutes. If the inspection 
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confirms the ISHM prognostics the component is then replaced along with others deemed 

in need of repair. The time to replace each line replaceable unit (LRU) replacements are 

triangularly distributed (60, 90, 240) minutes if only 1 maintainer is available for the 

action and triangularly distributed (40, 60, 160) minutes if 2 personnel are on the task. 

These parameters values were chosen to represent a range of repairs and inspections. 

Additionally, if multiple components require replacement or inspection, the tasks can be 

completed in parallel, if sufficient personnel are available. 

In addition to components being replaced upon immediate need, maintenance may 

also occur to make use of time between missions. At the end of a mission the ISHM 

system scans the aircraft. If the ISHM system indicates maintenance is required within a 

predefined maintenance window and the projected time to complete the component 

replacement(s) is less than the time before the next mission, the aircraft is brought in for 

maintenance. Further, if an aircraft is already in for maintenance and the ISHM system 

indicates other components are not in need of immediate replacement, but within the 

maintenance window, those components can be replaced if there is adequate stock. 

When maintenance actions are performed, they are arranged to take advantage of 

available personnel to complete all processes in the quickest manner. Depending on the 

number of replacements required on a particular aircraft, these tasks may be performed in 

parallel, serially, or some combination of the two utilizing the times discussed earlier in 

this section. 

Maintenance personnel are assigned to one of two 12 hour shift manning levels: 

day, 7AM to 7PM; and night, 7PM to 7AM. Various combinations of day and night shift 
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manning levels are explored in this work, ranging from 1 day and 0 night shift personnel 

to 20 maintainers on both day and night shift. The 20 maintainer case provides enough 

personnel that no wait time for inspection or repair is observed. 

The modeling assumptions for this work are as follows: 

 Aircraft missions occur around the clock regardless of maintenance manning; 

 Aircraft are either fully mission capable (FMC) or non-mission capable 

(NMC) with no partial mission capability (PMC). 

Results 

Reflected in this section are the results of manning variations across model runs. 

The figures herein represent the two shift manning levels from section 3. The upper row 

of the x-axis in the figures contains the number of personnel available for tasks on the 

day shift and the lower row includes those available for actions on the night shift. The 

results shown below are the mean of 100 model simulations at each personnel 

combination. The analysis for statistical significance was performed; however, 

confidence intervals are not presented in the figures in this work. The reason for 

confidence intervals not being presented is that 95% intervals shown in the figures are 

indistinguishable from the mean of the data, which are shown. 

Model Output 

Operational availability is a common measure of system performance. The AO’s 

observed in Figure 20 reflect the availability of the squadron of 12 aircraft over the 

duration of a 15 year simulation. The addition of one maintainer to the night shift is 

shown to have an appreciable impact on overall system performance, as is shown further 
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in the remaining figures. For the condition where only 1 maintainer is available on the 

day shift and none on the night shift, AO is slightly above 0.90. The addition of one 

person on the night shift to provide service increases the AO to over 0.96, meaning the 

aircraft are available for mission tasking an additional 6% of the time. As shown in 

Figure 27, that 6% represents an additional 4.5 hours of flying time per day across the 12 

aircraft or nearly the equivalent of adding 2 more aircraft to the squadron. 

Figure 20 also shows that adding 1 additional person to the day shift for a total of 

2 provides a benefit worthy of consideration by management. The addition of other 

personnel on both day and night shifts continues to have positive impacts on the 

operational availability but with smaller increase in magnitude. Beyond the inclusion of 2 

personnel on the night shift, AO gains are in the thousandths and when factoring in the 

remaining metrics may not sway management decisions. The largest gains noted in 

Figure 20 are the result of the aircraft not having to wait up to 12 hours over the night 

shift for maintenance which occurs in the step from 0 to 1 night shift maintainer. Other 

gains result from the ability to complete more component replacements simultaneously as 

more personnel are available. 

While the AO may appear high for many aircraft, it should be noted that these 

results only include the impact from 20 components on the 12 aircraft. This note should 

also be considered in reviewing the remainder of the data and figures presented in this 

research. 
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Figure 26. Operational Availability 

Daily flying hours for the 12 aircraft squadron, shown in Figure 27, reflect that 

the inclusion of just 1 maintainer on the night shift has the effect of increasing daily 

output by over 3 hours. As previously mentioned, this is the equivalent of adding another 

mission to the daily flying schedule for the cost of one maintainer. Further gains in daily 

sortie production with increasing numbers of personnel, both day and night shift, are 

smaller and left to operations and maintenance management to determine the efficacy of 

including the extra manpower. 



117 

 

 

Figure 27. Daily Flying Hours 

Alluded to in previous discussion, the amount of time annually the squadron is 

NMCM generally decreases as the number of personnel increases as observed in Figure 

28. The addition of one maintainer to the night shift drops the mean NMCM from 10200 

hours to 3400 for the 1 maintainer on the day shift case. The nearly 7000 hours less time 

down for maintenance affords increased opportunities for aircraft missions as well as 

lower workloads for the individual maintenance personnel. Greater gains can also be 

realized with the inclusion of more personnel on the day shift, but plateaus as the NMCM 

time becomes mostly hands-on maintenance with little to no awaiting maintenance time. 
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Figure 28. Annual NMCM Hours 

Exploring the efficacy of maintenance manning from a different vantage than 

NMCM, Figure 29 shows the average time an aircraft has to wait prior to a maintenance 

action beginning. In other words, Figure 29 represents the responsiveness of the 

maintenance system to aircraft demands. If supply wait time were added to these data, the 

result would be the MLDT from Eq (1). The shape of Figure 29 follows that of Figure 28 

with the magnitude reflecting total waiting time for all maintenance actions divided by 

the number of total actions. The figure clearly shows the impact of the addition of a night 

shift maintainer on the wait time for maintenance to begin, bringing the average wait time 

from over 5.5 hours to 32 minutes. Once night shift personnel are increased to 2 or more, 
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the average wait time is less than 6 minutes for all cases. The 8 day and 8 night case wait 

time is 2 seconds and 20 day, 20 night is 0. 

 

Figure 29. Mean Time Waiting for Maintenance 

The addition of repair time to Figure 29 yields the maintenance metric of MTTR 

found in Figure 30. Again it is noted that the elimination of a 12 hour period where no 

personnel are available to perform maintenance is beneficial to aircraft turn-around time 

from maintenance. While Figure 28, Figure 29, and Figure 30 depict similar information, 

they each provide insight into the timeliness of the maintenance system in its ability to 

support aircraft operations. 
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As in Figure 29, Figure 30 shows an area of little variation for cases where 2 or 

more personnel are available on the night shift. The resulting MTTRs for these cases are 

predominately true labor hours as maintainers are available to perform most tasks as they 

arise. 

 

Figure 30. Mean Time to Repair 

Figure 31 shows the utilization rate for the maintenance personnel assigned to 

each simulation. The first column shows that with only 1 person on day shift and none on 

the night shift, the maintainer is busy 50% of the available hours. While that may not 

appear to be overtaxing on the individual, that person must perform all repairs and 

inspections as required. While the forward looking prognostics of the ISHM system can 

allow for deconflicting of component replacement, failure warnings must still be 
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adjudicated through inspections which can lead to backups in the maintenance process, 

noted in Figure 29. 

 

Figure 31. Personnel Utilization 

The doubling of day shift personnel to 2 while keeping the night shift at 0 results 

in a 46% drop in utilization rate. The trend in Figure 31 shows that adding personnel on 

the dayshift steeply drops the utilization rate while including additional night shift 

personnel changes the magnitude of the group rates. Examining the 20 day and 20 night 

case, utilization rate drops to 0.02, leaving those personnel 98% of their time to focus on 

other tasks. 
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The usefulness of Figure 31 lies in being able to manage workload for 

maintenance personnel. As this model only represent 20 components there are likely 

other tasks maintainers are responsible for accomplishing. If it is shown that, in the case 

of only 1 day worker and 0 night, a maintainer will need to focus 50% of their shift, or 6 

hours, to these components scheduling other work becomes more difficult. 

The amount of maintenance required for a flying hour is an indication of 

efficiency of maintenance processes and the reparability of the aircraft. Figure 32 shows 

MMH/FH remains between 0.2 and 0.25. While MMH/FH doesn’t show much variation, 

the entire picture is not clear from this one figure. Total maintenance man hours are lower 

for the cases with no night shift personnel, but referring to Figure 27 it is also noted that 

flying hours are lower as well. The driving case for a relatively stable MMH/FH results 

from the repair times in section 3, which do not vary across the manning scenarios. It 

follows then that as the cases with night shift personnel have more flying hours the 

maintenance hours increase accordingly, keeping the MMH/FH ratio similar. Within the 

night shift bands, MMH/FH variation is noted with different day shift personnel numbers. 

When observing Figure 20 and Figure 27 in relation to Figure 32, the incremental gains 

in Ao and daily hours track within the night shift bands. 
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Figure 32. Maintenance Man Hours per Flying Hour 

Turning to the costs associated with the maintenance of the 20 components of 

interest in this research, Figure 33 shows the annual cost of direct maintenance. These 

figures only include the time maintenance personnel are actively inspecting components 

to determine if failure indications are true or are in the process of replacing items on the 

aircraft. An hourly maintenance cost of $50 is used for all personnel (Department of the 

Air Force, February 1994). The annual cost of maintenance peaks at $155K for the 8 day, 

8 night personnel case and is slightly lower for the 20, 20 case, due to the efficiency of 

having more personnel to complete tasks. The lower cost of the 1 day and 0 night case 

belies the fact that the operational output is markedly lower, as shown in Figure 20 and 

Figure 27. 



124 

 

 

Figure 33. Annual Maintenance Cost 

Shifting focus to total logistics and maintenance cost in Figure 34, it is clear that 

the direct maintenance costs are but a small portion of the overall price tag. Except in the 

cases where no night shift personnel are scheduled, maintenance costs are less than 7% of 

the total logistics and maintenance cost. The percentage rises to between 14% and 21% of 

the total cost when no night shift personnel are available. The remainder of this cost is the 

purchase and storage of spare parts for aircraft operation. 
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Figure 34. Annual Logistics and Maintenance Cost 

Case Study 

Let us explore the data in section 4.1 from a maintenance management 

perspective. If a decision had to be made where only 2 personnel were available for 

maintenance on the 20 components studied which shift combination is preferred: 2 day 

and 0 night; or 1 day and 1 night. We will assume that management wants the most 

performance, Ao and daily flying hours, for the least cost with other factors considered 

for comparison. 

Daily flying hours for the (2, 0) case are 29.3 versus 32.7 for the (1, 1) case, with 

operational availabilities of 0.93 and 0.96 respectively. With only these two items 

considered, management would choose the (1, 1) case as better performance is achieved. 
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When cost is considered, annual maintenance costs are $10000 larger for the (1, 1) case 

or $150000 over the 15 year simulation time with a $230000 total logistics and 

maintenance cost difference. The question for management then becomes is this cost 

increase justified by the higher system performance?  

The likely answer to the previous question is yes as the system performance gain 

of the (1, 1) case over the (2, 0) case is equivalent to an additional aircraft worth of flying 

time each day. Thus if the cost of an aircraft is higher than $230000 with a planned life of 

at least 15 years the higher support costs can be justified. Similarly, an aircraft could be 

removed from the (1, 1) case and still achieve performance equivalent to the (2, 0) case. 

When additional factors, shown in the remaining figures, are considered, the case 

for choosing a (1, 1) maintenance manning scheme becomes greater: 4000 fewer NMCM 

hours per year; 190 minutes less wait time for maintenance; 3 hours less MTTR; and a 

slightly smaller MMH/FH. The personnel utilization rate of the (1, 1) case is 0.29 versus 

0.27 for the (2, 0) case, which could be a positive or negative depending on other 

requirements placed on the personnel. 

In summary, a management decision based on 2 maintainers would likely yield a 

1 day and 1 night shift scheme based on the evidence presented above. Further utility in 

this research is offered in determining maintenance workload and the impacts of manning 

decisions on overall aircraft system performance. Additionally, the model parameters for 

health monitoring capabilities can be changed to determine the downstream effect of 

system design on the logistics and maintenance operations. This information can then be 

used to provide trade-off analyses to program management. 
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Conclusion 

The work presented above provides a tool for managers and planners for 

utilization in system design and support planning. Information captured in the figures 

details cost and performance data that show efficiency in maintenance processes at set 

manning levels. The ability to define a trade-space for system parameters early in the 

development of an aircraft or any system affords the opportunity to explore future cost 

savings and weigh performance trade-offs.  

Future work in this model environment should include additional study of 

maintenance windowing for when aircraft is already being brought in for other work. 

Also, the utilization of remaining useful life prognostics could be enhanced for more 

detailed event scheduling for further gains in downtime efficiency and aircraft utilization. 
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VII. Component Replacement Windowing 

Chapter Overview 

This chapter examines the impact of placing a maintenance opportunity timeframe 

(window), counting back from the projected component failure time, in the maintenance 

logic. This window affords the opportunity for components to be replaced if they fall 

within the specified time frame, and the aircraft is already in maintenance for another 

replacement or inspection. The data presented herein show there are potential benefits, in 

both cost and availability to establishing this type of maintenance window. 

Model Description 

The parameters used in this chapter are the same as those of chapter 6 with the 

addition of the maintenance opportunity introduced above. While getting all useful life 

out of a component is desirable, in some instances it may make sense to replace one or 

more components earlier than planned. The reasons can be for both availability and cost 

savings in the long term as maintaining several components at once is generally more 

efficient than replacing them individually. This grouping of maintenance actions saves on 

set-up time for repairs as it only has to be done once versus many times for individual 

components. The results below illustrate the benefits and drawbacks of a maintenance 

window and its effect on cost and availability. 
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Results 

This work examines results across a range of maintenance manning scenarios 

initially, as in chapter 6, to show the effect on operational availability and daily flying 

hours. The number of maintenance personnel on the day and night shifts, and the length 

(lead time) of the maintenance interval will be varied to examine this effect. The 

remainder of the figures show only one manning scenario to focus on the impact of 

various levels of maintenance windowing.  

Figure 1 depicts the operational availability of the twelve aircraft squadron across 

a range of manning scenarios and maintenance windows. It is observed in the figure that 

as the number of personnel available increases AO does likewise. Within each manning 

band six maintenance windows are also graphed for comparison. The effect of the 

maintenance opportunity window on AO shows an increase until 40 hours prior to 

projected failure and then a slight reduction at 50 hours. As in chapter 6, the increasing 

AO trend across the manning bands is as a result of personnel available to perform repairs 

as required instead of aircraft sitting and waiting for inspections or component 

replacements. Within each manning band the operational availability increases as the 

window increases, until it reaches 50 hours. This AO rise results from seizing the 

opportunity to perform maintenance when the aircraft is already down for another action, 

thus saving on inspection and set-up time to perform replacements individually. The 

leveling off of AO between 30 and 50 hours results from more replacements being 

conducted, especially for components that have low MTBFs, which require more 

downtime than utilizing a smaller window. 
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Figure 35. Maintenance Windowing Operational Availability 

Mean daily squadron flying hours, shown in Figure 36, follow the general trends 

seen with operational availability. As in the manpower study in chapter 6, daily hours 

increase as more personnel are available to maintain the aircraft. Within each manning 

band, the effect of maintenance opportunity windowing is noted to increase as the 

window hours increase. The gains in daily hours associated with the different windows 

result from the opportunity taken to incur fewer times down to make component 

replacements in groups versus individually. The reason daily flying hours do not drop off 

at the same time operational availability does lies chiefly in the model design. When an 

aircraft returns to mission availability following being in maintenance it incurs a hold 

prior to its next mission. While this hold time is uptime in terms of AO, flying does not 

occur and thus daily hours do not accrue. Shown later in Table 6, false alarms drive the 
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number of times aircraft enter maintenance at lower maintenance windows. Once false 

alarms are cleared, the aircraft is released back to the hold status until its next mission is 

scheduled. Therefore, the more false alarms that occur, the more times an aircraft enters 

the mission hold sequence thereby reducing the number of hours the aircraft fly. 

 

Figure 36. Mean Daily Flying Hours 

From this point forward the figures and discussions examine the maintenance 

manning case with 4 personnel on the day shift and 2 personnel on the night shift. This 

case is chosen since overall gains in hours, availability, and costs are relatively low for 

the scenarios with additional personnel available. 

One of the goals of grouping maintenance activities is to reduce the total number 

of hours the aircraft are down and unavailable for operations. Figure 37 shows the mean 
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annual NMCM time for each maintenance window. It is observed that as the window size 

increases, that is, a greater opportunity to replace a component before its predicted 

failure, NMCM hours decline. The decrease is attributed to two items. First, grouping of 

component replacements into a single maintenance action in lieu of several maintenance 

actions with only one component replaced. Second, as components are replaced more 

frequently as the window widens the ISHM system is reset more frequently which leads 

to the added benefit of fewer false alarms which require inspections to clear. From 

chapters 4 and 6 it is noted that as the sensors accumulate flight hours, they also degrade 

which leads to an increase in the number of false alarms. In this scenario, false alarms 

decrease from an average of 248 annually to 22 when the maintenance window widens 

from 1 to 50 hours. The yearly NMCM hours for a 50 hour window are 52% lower than 

at a 1 hour maintenance window and 50% lower than a 10 hour window. Stated another 

way, across the 15 year simulation the 50 hour maintenance window provides over 36000 

hours more availability as the aircraft are no longer NMCM. 
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Figure 37. Mean Annual Non-Mission Capable-Maintenance Hours 

The reduction in total NMCM hours with an increasing maintenance window, 

made possible by a grouping of maintenance tasks, has a somewhat inverse trend in mean 

downtime. As Figure 38 shows, mean downtime increases as the maintenance window 

widens. At a 50 hour window, the MDT is more than double that at either 1 or 10 hour 

windows. Grouping of component replacements into larger aggregate tasks versus many 

individual ones increases the overall time required each time down, but as Figure 37 

shows the net effect is lower overall system downtime. While this stands in contrast to 

DoD predictions of “significantly reduced” MDTs by performing CBM versus time-

based preventive maintenance it does not necessarily contradict the assertion (Under 

Secretary of Defense (AT&L), May 2008). Grouping takes advantage of the diagnostic 
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and prognostic capabilities provided by ISHM to apply CBM in a more optimal manner 

to reduce total aircraft downtime in lieu of many shorter downtimes enabled by the same 

ISHM capabilities. The net effect of the grouping of maintenance activities is to increase 

the mean downtime while simultaneously reducing total downtime. There is an additional 

increase in MDT as a result of a growth in NMCS time as the maintenance window 

becomes larger. The NMCS increase results from the supply ordering system, in 

particular the supply lead time, not keeping up with the opportunistic maintenance 

occurring during the grouping windows. 

 

Figure 38. Mean Downtime 

As the maintenance opportunity window widens, a counterpoint is developed in 

an increase in the unused useful life for the components. Figure 39 shows the average 
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useful life lost across all components. The values are determined by taking the difference 

between the accumulated part life at replacement and the actual (not ISHM RUL 

projection) failure point assigned to new parts. Major factors that contribute to life lost 

include the RUL prediction error, maintenance window, safety factor, projected mission 

duration, stock levels, and manning levels among others. Safety factor is fixed at 10 

hours for all components and mission durations are LOGNORM (4, 3) hours. These two 

components along with error in RUL prognostics account for the majority of part life lost. 

The accumulation of the items above leads to the information presented in Figure 39, 

which shows that useful life lost increases 142% from a 1 hour window to a 50 hour 

window. While it may be desirable from a utility standpoint to get all the useful life 

available from a component, it may not be the best financial decision. 

 

Figure 39. Average Life Lost Per Component 
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Examining Figure 40 shows that as the maintenance window increases, supply 

costs go up as well. Ideally, costs should be kept as low as possible, but a balance must 

be struck between cost, availability, and system performance. Following the trend from 

Figure 39, annual supply cost rises as maintenance window increases due to a larger 

demand for new components to replace those being removed from service under the 

maintenance opportunity window. Obviously, one would expect a correlation, and 

causation, between RUL and supply cost. If parts are being replaced more often, more 

parts will need to be purchased over the system lifetime. Further exploration of cost 

should be considered to develop a trade-space with the parameters discussed above. 

 

Figure 40. Annual Supply Cost 
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Figure 41 contains the average annual maintenance costs for the maintenance 

opportunity windows. It is noted that the cost of maintenance is considerably lower than 

that of spares. Maintenance costs captured are only those directly related to work on the 

aircraft performing inspections, replacements, etc. Idle costs and those associated with 

training and other duties are not captured in this research. Figure 41 shows that 

maintenance costs decrease as the maintenance window increases. This cost decrease 

results from the reduced set-up time for grouped maintenance actions versus individual 

ones. 

 

Figure 41. Annual Maintenance Cost 
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Combining the data from Figure 40 and Figure 41 yields the total annual cost 

found in Figure 42. As the maintenance costs are much lower than supply costs, total cost 

is dominated by the cost to procure and store parts. Over the 15 year simulation these 

annual costs result in a $7.5M difference between the 1 hour maintenance window and 

the 50 hour window, with the 50 hour window total cost being $42.3M. As previously 

mentioned these costs need to be weighed along with availability data and compared to 

program objectives to determine a proper maintenance window. 

 

Figure 42. Total Annual Cost 

An examination of the trade-space between AO, total cost, and component life lost 

shows the decisions program managers face when selecting a set of maintenance 
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parameters. Figure 43 compares annual costs to average component lost life for the 6 

maintenance windows utilized. Restating from prior discussion, it is observed that as the 

window increases, component life lost and total cost both rise. This figure by itself would 

likely drive a decision to select the smallest window, but this does not provide a complete 

picture of what is happening system wide. 

 

Figure 43. Annual Cost versus Component Life Lost 

Figure 44 provides another component in the trade-space analysis by comparing 

operational availability to component life lost. While Figure 43 showed the lowest cost at 

the smallest maintenance window, Figure 44 shows it also produces the lowest AO. This 

introduces a decision point for management to determine whether the 0.95 AO of the 1 

hour window is acceptable or if 0.97 is more desirable. It is noted that these operational 
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availabilities are only for the impact of the 20 components studied and not for all aircraft 

systems as a whole. 

 

Figure 44. Operational Availability versus Component Life Lost 

A final comparison, found in Figure 45, shows operational availability contrasted 

with total cost. Utilizing this figure, decisions can be made based upon the cost to achieve 

increases in AO for the various maintenance opportunity windows. It is observed that an 

increase from 0.95 at the 1 hour window to 0.97 at the 30 hour window will cost an 

additional $295K annually or $4.4 M over the 15 year simulation. It is left to 

management and program objectives to determine if this trade-off is beneficial to overall 

program goals. 
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Figure 45. Operational Availability versus Annual Cost 

Examining the material reliability metric of MTBF for the aircraft is not possible 

for this ISHM research as no component failures are recorded. The design of the ISHM 

monitoring logic combined with adjudication of false alarms and recalibration of true 

component status capture pending failures before they occur. Additionally, a 10 flight 

hour safety factor is included in RUL prognostics thus adding extra margin to component 

failure. While MTBF may not be measureable, mean time between maintenance 

(MTBM) and mean time between repair/replacement (MTBR) for the aircraft can be 

calculated.  

Aircraft MTBR is determined by taking accumulated flight hours and dividing by 

the number of replacements or groups of replacements to find average time the aircraft as 

a whole are available between fixes. Figure 46 shows MTBR times for the maintenance 

windows utilized in this work. In this scenario a 20 hour window has the highest MTBR 
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by 25 minutes over the 30 hour window. Referring back to Figure 36 it is shown that as 

the maintenance window increases daily flying hours do as well. That information, 

coupled with Figure 46, must mean that more replacements are occurring since the 

MTBR is dropping. This is a logical inference since as more hours are flown, components 

will experience a corresponding increase in use thus requiring replacement more often.  

 

Figure 46. Aircraft Mean Time Between Replacement 

Aircraft MTBM is the average of the accumulated flight time from when the 

aircraft leaves maintenance until it returns for any reason; inspection, false alarm, repair, 

etc. Figure 47 shows the aircraft MTBM which increases as the maintenance window 

widens. The trend tracks with the inverse of NMCM in Figure 37. As the NMCM 
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decreases with increasing window size due primarily to the grouping of maintenance 

activities, so does the number of times the aircraft enter maintenance control. This results 

in longer durations between inspections and replacements. The added benefit of the more 

frequent component replacement with an increasing maintenance window is the reduction 

in false alarms. False alarms, at the 1 hour window, dominate the cause of entry into 

maintenance, which drives the MTBM down. 

 

Figure 47. Aircraft Mean Time Between Maintenance Action 

False alarms drive the number of times aircraft enter maintenance in the smaller 

maintenance windows, with the percentage decreasing as the maintenance window 

grows. Table 6 shows the relationship between maintenance window, number of times 
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entering maintenance, false alarms, and number of times components are replaced The 

number of replacements counts either individual component replacements or a group of 

component replacements as one action. The number of replacements varies mainly as a 

result of the maintenance window and the impact of the window on daily flying hours 

shown in Figure 36. False alarms decrease because as components are replaced more 

frequently, and further from projected failure, the ISHM sensor and prognostic 

degradation does not impact the RUL projection as greatly. The difference in false 

alarms, along with their downtime impact on aircraft flying hours, and the effect of 

maintenance grouping, accounts for the difference between MTBR and MTBM. 

Table 6. Maintenance Actions 

Maintenance 

Window (hrs) 

Times Aircraft 

Enter 

Maintenance 

False Alarm as 

Cause  

Number of 

Replacement 

Actions 

1 42303 82.6% 7378 

10 39739 83.0% 6757 

20 26257 73.0% 7077 

30 17713 57.2% 7576 

40 13511 40.8% 7999 

50 11697 28.7% 8344 

 

As shown in Table 6 the percentage of false alarms as the sole cause of an aircraft 

entering maintenance is high. There are two means of entry for an aircraft into 

maintenance. The first entry case results from an ISHM system indication that a potential 

fault exists in one or more of the aircraft components that will violate the safety limit or 

fail within the projected flight time. If an aircraft is found to have only false alarms after 

inspection, the maintenance opportunity window is not checked and the aircraft is 
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released to perform missions. However, if one component triggers a replacement, all 

components on the aircraft within the maintenance window then are eligible for 

replacement. The second entry case for an aircraft into maintenance occurs post mission 

during the hold before the next scheduled flight. A maintenance window check is 

performed when an aircraft reaches the post mission hold. If any projected repairs can be 

completed prior to the next mission, the aircraft is routed to maintenance for component 

replacements. This between mission check provides the chance to capture maintenance 

actions during normal standby time for the aircraft prior to the next mission. As the 

maintenance window increases, this hold check for potential maintenance actions is 

increasingly the cause of aircraft entering maintenance. 

Aircraft entering maintenance from the between mission hold check have cleared 

the post flight ISHM scan without any indications of potential failures within the safety 

window. Since the aircraft from the hold haven’t been sent to maintenance as a result of 

immediate need for repair, only sent for opportune maintenance within the maintenance 

window, they forgo the inspection and false alarm check and proceed directly for 

replacement. This leads to components being replaced further from failure and prior to 

triggering most false alarms. There are, however, multiple RUL checks per mission so 

this hold maintenance under the maintenance window does not eliminate all false alarms. 

Additionally, as the uncertainty grows with sensor life (see Eq. (5)), the potential for false 

alarms increases as well. 

A parametric analysis was performed with static prognostic uncertainty levels, 

without degradation, for the model confirming the increase in false alarms as uncertainty 

rises, regardless of maintenance window size. Further, as the uncertainty level and thus 
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the standard deviation of the lognormal distribution used for RUL increases, the 

probability that the RUL prognostic will predict less than the true remaining life 

increases. This shift is a function of the lognormal distribution and the impact its standard 

deviation has on skewing the shape of the distribution. As the standard deviation 

increases, the mode, or peak, of the distribution shifts to the left and decreases in 

magnitude while the right tail decrease more slowly, increasing the probability that the 

RUL prediction could be much greater than actual remaining life. Further, analysis of 

prognostic uncertainty shows that if the lognormal function is utilized for RUL prediction 

uncertainty must be held to a low level in the system. If uncertainty becomes too large, 

the system risks cost effectiveness resulting from too many inspections to clear false 

alarms and general mistrust by users. 

Shown in Table 7 below are the results of the parametric analysis of prognostic 

uncertainty. The left two columns, uncertainty and maintenance window, are the 

parameters of change in the simulation. The remaining columns are model outputs related 

to aircraft entering maintenance and the associated reason for entering. It is noted that as 

the uncertainty increases, the percentage of time the only reason an aircraft enters 

maintenance is for a false alarm increases considerably. Above an uncertainty level of 10, 

the percentage of false alarms is likely unacceptable for a fielded system. Shifting focus 

to the maintenance window factor; it is shown in the between mission replacements 

column that as the maintenance window increases, the number of times the aircraft enter 

maintenance from the hold station increases as well. This results from the widening 

window capturing more components, further from actual failure, to replace during this 

opportunity. 
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Table 7. False Alarm Parametric Analysis 

Static 

Uncertainty 

Maintenance 

Window 

(hrs) 

False Alarm 

Only Cause 

for Entry 

Number of 

Times Enter 

Maintenance 

Number of 

Maintenance 

Actions 

Between 

Mission 

Replacements 

False Alarm 

Entry 

Percentage 

1 1 0 8083 8083 0 0.00% 

1 10 0 7132 7132 0 0.00% 

1 20 0 6436 6436 4578 0.00% 

1 30 0 6517 6517 5744 0.00% 

1 40 0 6600 6600 6056 0.00% 

1 50 0 6771 6771 6280 0.00% 

5 1 10 8351 8342 0 0.11% 

5 10 9 7635 7626 0 0.12% 

5 20 5 6841 6836 3555 0.07% 

5 30 2 6659 6657 5481 0.03% 

5 40 1 6798 6797 6091 0.01% 

5 50 0 6968 6968 6382 0.00% 

10 1 1767 10125 8358 0 17.45% 

10 10 1706 9596 7891 0 17.77% 

10 20 1025 8278 7253 3102 12.39% 

10 30 403 7503 7100 5315 5.37% 

10 40 144 7321 7177 6213 1.97% 

10 50 73 7348 7275 6537 1.00% 

20 1 15813 23777 7964 0 66.51% 

20 10 15138 22694 7556 0 66.70% 

20 20 8820 16075 7254 3338 54.87% 

20 30 4202 11614 7412 5418 36.18% 

20 40 1968 9537 7569 6366 20.63% 

20 50 1073 8815 7742 6814 12.18% 

30 1 33200 40783 7582 0 81.41% 

30 10 31592 38670 7078 0 81.70% 

30 20 18167 25301 7133 3582 71.81% 

30 30 9377 16881 7504 5603 55.55% 

30 40 4955 12733 7779 6533 38.91% 

30 50 3082 11091 8009 6994 27.79% 

40 1 47587 54806 7219 0 86.83% 

40 10 44897 51599 6702 0 87.01% 

40 20 26385 33407 7021 3653 78.98% 

40 30 14280 21768 7488 5645 65.60% 

40 40 8109 15949 7840 6585 50.84% 

40 50 5458 13594 8136 7064 40.15% 
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Statistical Significance 

An analysis for statistical significance was performed; however, confidence 

intervals are not presented in the figures in this work. The reason for confidence intervals 

not being presented is that 95% intervals shown in the figures are not distinguishable 

from the mean of the data, which are shown. This holds true for the entirety of this 

research. For the data presented in chapter 7, with the exception of the 10 and 40 hour 

maintenance windows MTBR data in Figure 46, the p-values for t-test comparisons 

within each figure are less than 0.0001, thus statistically significant. The data for 10 and 

40 hour windows can be compared in other figures, with statistical significance, to 

determine which one to choose. Additionally, as each of the 100 replications run per 

scenario has 12 aircraft and simulates 15 years, an immense amount of data points are 

generated yielding the small confidence intervals. 

Summary 

This chapter illustrates the potential benefit of including a maintenance 

opportunity window to allow grouping of maintenance tasks. It is shown that grouping 

can improve operational availability through a reduction in total downtime. However, this 

performance improvement comes at the expense of increased spares costs even while 

maintenance costs decline. The maintenance window permits another factor to be 

considered in performing a trade-space analysis to determine requirements for ISHM 

capabilities and maintenance and logistics processes. Finally, data show that uncertainty 

needs to be kept low if a lognormal distribution is used for the remaining useful life 

prognostic.
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VIII. Conclusions and Recommendations 

Chapter Overview 

This chapter compiles conclusions from the preceding chapters and identifies the 

significance of the research presented. Recommendations for action and proposed future 

research efforts are also discussed. 

Conclusions of Research 

The main contribution of this effort is a simulation tool to compare sensing and 

maintenance options and examine their impact on desired performance factors. The 

ability to input ISHM system and aircraft characteristics and investigate alternative 

approaches to monitoring, maintenance processes, and spares management makes this 

tool useful in program decisions on whether or not to implement monitoring techniques. 

Weighing the impacts of simulation outputs and management philosophies with cost and 

performance objectives is left to program managers to determine the appropriate level of 

service required. The ability to define a trade-space for system parameters early in the 

development of an aircraft or any system affords the opportunity to explore future cost 

savings and weigh performance trade-offs against defined system architectures and 

component system requirements. 

Conclusions from this research and answers to the research questions from 

chapter 1 are as follows: Question #1 asked what the key cost and effectiveness drivers 

for ISHM enabled condition based maintenance and logistics processes. The research 

scenarios in chapters 4 through 7 show that prognostic accuracy is a driver of cost to 
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operate with an ISHM system in that it drives false alarms and thus unnecessary 

inspections and labor costs. In order to counter a set or known prognostic accuracy 

setting a tolerance for the number of false alarms allowed prior to ISHM system 

maintenance becomes a trade-off between cost and system availability. Further, 

maintenance personnel allocation and maintenance opportunity windows impact cost and 

availability and must be weighed when determining system priorities. Additionally, with 

ISHM prognostics, supply ordering gains efficiency over baseline processes and with 

careful contract negotiations a just-in-time logistics chain may be a viable alternative. 

Finally, cost of development, acquisition, and implementation of the ISHM/CBM system 

is a major driver in the deployment of a system. The model comparisons between 

baseline and ISHM processes can be used to develop a trade-space analysis to determine 

a cost difference between the two to be targeted as an ISHM development and 

deployment budget. 

Research question #2 asked: what is a reasonable and appropriate scope for model 

development to establish performance requirements for ISHM sensors and prognostics, 

maintenance, and logistic processes? Inclusion of inspection, maintenance, supply, and 

health monitoring tasks along with flight operations provided reasonable depth in the 

model. Resources and costs associated with the aforementioned tasks were easily handled 

by the model as well. Scope for this research was limited mainly in the number of 

components modeled. One hundred simulation runs, to gain statistical significance, took 

approximately 1 hour to process on a standard dual-core PC. There are no indications that 

inclusion of additional components to the model would provide any complications other 
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than increased processing time, which could be mitigated with increased processing 

power. 

The third research question posed: what are the operational and maintenance cost 

impacts of an ISHM enabled CBM system? In the components utilized the chief cost 

driver is the purchase of supplies. Total costs for like size squadrons were shown to be 

similar between baseline and ISHM equipped systems. The ISHM systems however had 

higher operational availability and daily flying hours that would allow a squadron ISHM 

equipped aircraft to operate with 2 fewer planes and still exceed the performance of the 

baseline squadron. Additionally, maintenance costs are reduced through demand versus 

time-driven replacements and inspections. The impact to O&M is then the ability to 

remove aircraft from inventory or to expand into other roles as availability and reliability 

increase. 

It is suggested that the lognormal distribution may not be optimal for utilization in 

determining the remaining useful life of components. While the lognormal distribution 

does eliminate the potential for negative values that may occur under the left tail of the 

normal distribution, its skewness under increasing standard deviation, uncertainty in this 

research, likely drives too many false alarms for acceptance as a fielded system. 

However, even with an elevated number of false alarms, the ISHM enabled aircraft 

provided better system performance and lower maintenance costs than a baseline system.  

Research question #4 asked if mean downtime was a good measure of system 

performance for ISHM/CBM systems. It was shown that MDT can increase with the 

implementation of health monitoring particularly with maintenance grouping. This is 

contrary to DoD projections of significant reduction in MDT with the implementation of 
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condition based maintenance (Under Secretary of Defense (AT&L), May 2008). 

However with a poor performing supply system MDT can actually increase due to an 

increase in NMCS time. Therefore, depending on the scenario an increase in MDT can be 

both positive and negative from a system performance perspective. This leads to the 

conclusion that MDT is not always a good predictor of overall system performance. 

The final research question posed the question: does maintenance grouping based 

on prognostics improve operational availability, total downtime, and cost? The results 

show that maintenance grouping does increase AO through a reduction in total downtime. 

While maintenance costs are reduced with grouping, supply costs increase as the 

maintenance window increases since more components are required due to premature 

replacement and loss of useful life. 

Significance of Research 

The significance of this research lies in the inclusion of flying, supply, and 

maintenance processes in a single model to study the effects of integrated systems health 

management. Previous research focused on these aspects individually, making limiting 

assumptions for those processes not of interest and leaving the interactions between 

systems unexplored. Additionally, proprietary systems developed in this field are not well 

published for competitive reasons leaving a gap between research and development and 

deployment. The discrete event simulation presented in this research provides a tool for 

new health monitoring techniques to be analyzed by inserting them into a model to 

determine the effect of their accuracy and prognostics capabilities on overall system 

performance. 
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The tool and simulation outputs present a capability for program management to 

use in determining if the long-term performance increases of the ISHM system balance 

out the additional upfront cost of implementation. The data are used to determine 

feasibility of solutions and trade-space for requirements development. Further, 

researchers can explore the interactions of health monitoring, supply and maintenance 

processes to provide more than anecdotal projections of savings. Program management 

can use the tool to conduct cost-benefit analyses when considering new systems or 

operating procedures. 

Recommendations for Future Research 

Several recommendations for future research efforts were identified during this 

research effort. Further study should include exploring repairable systems and the impact 

on maintenance utilization and repair versus purchase decisions. This research would add 

further depth and utility to the model as well as providing increased interactions between 

supply and maintenance decisions. Additionally, the inclusion of constraints on repair or 

replacement order of components would add additional realism to the work. This 

restriction would incur delays prior to the start of maintenance on some parts while work 

is conducted on others and would impact grouping decisions and outcomes. As discussed 

earlier in this chapter, remaining useful life prognostics could be improved over those 

provided by the lognormal distribution. It is suggested that other RUL formulations be 

studied to potentially further improve performance and cost. 

A study on a fielded aircraft with proposed or deployed health monitoring systems 

would provide further validation of the processes and demonstrate real-world impacts to 
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decision makers. This research could also be applied to surface vehicles, ships or other 

equipment with some changes to operating procedures to determine the utility on other 

systems with different system interactions and constraints. Further, a cost benefit analysis 

of preventive maintenance, and the associated inspections, for known failure modes could 

be conducted against projected cost savings from ISHM. Finally, while this research 

discussed and provided tools for trade-space analysis, it may be possible to conduct this 

type of simulation as an optimization problem. Program objectives would need to be 

established as well as constraints on capabilities and resource allocations. 

Summary 

The research presented identifies the impacts of health monitoring systems on 

supply, maintenance and flight operations. Further, it creates a tool for management to 

utilize in the assessment of implementing health monitoring systems on new and legacy 

aircraft. As aircraft and other systems service lives are extended beyond intended design 

life and amid shrinking budgets and manpower, it is necessary to assess potential 

efficiencies afforded by ISHM. The results of the research demonstrate the potential to 

improve system availability, reduce cost and define a trade-space for ISHM system 

assessment.  

 

 

 



155 

 

Bibliography  

Amari, S. V., McLaughlin, L., & Pham, H. (2006). Cost-effective condition-based 

maintenance using markov decision processes. Paper presented at the Reliability and 

Maintainability Symposium, 2006. RAMS '06. Annual, 464-469.  

Anderson, E. T., Fitzsimons, G. J., & Simester, D. (2006). Measuring and mitigating the 

costs of stockouts. Management Science, 52(11), 1751-1763.  

Atchley, W. D., Clark, D. M., Culosi, S. J., Dunch, L., Kline, R. C., Lang, T. E., Pouy, 

M. R. (2010). Lifecycle forecasting improvement: Causative research and item 

introduction phase. ( No. DL920T1).LMI.  

Banks, J., Reichard, K., Crow, E., & Nickell, K. (2005). How engineers can conduct cost-

benefit analysis for PHM systems. Paper presented at the Aerospace Conference, 

2005 IEEE, 3958-3967.  

Blanchard, B. S., & Fabrycky, W. J. (2005). Systems engineering and analysis (4th ed.). 

New Jersey: Prentice Hall Englewood Cliffs.  

Braglia, M., Grassi, A., & Montanari, R. (2004). Multi‐attribute classification method for 

spare parts inventory management. Journal of Quality in Maintenance Engineering, 

10(1), 55-65. doi:10.1108/13552510410526875  

Brand, C., & Boller, C. (2000). Identification of life cycle cost reductions in structures 

with self-diagnostic devices. ( No. ADP010432). Germany: DTIC Document.  

Butler, A. (2013). F-35’s ambitious, new fleet management system. Aviation Week & 

Space Technology, (9/16)  

Byer, B., Hess, A., & Fila, L. (2001). Writing a convincing cost benefit analysis to 

substantiate autonomic logistics. Paper presented at the Aerospace Conference, 

2001, IEEE Proceedings. , 6 3095-3103.  

Camci, F. (2009). System maintenance scheduling with prognostics information using 

genetic algorithm. IEEE Transactions on Reliability, 58(3), 539-552.  

Carnero Moya, M. C. (2004). The control of the setting up of a predictive maintenance 

programme using a system of indicators. Omega, 32(1), 57-75.  

Chairman of the Joint Chiefs of Staff. (2015). Joint capabilities integration and 

development system (JCIDS). CJCSI 3170.01I. Washington DC: CJCS.  



156 

Chilcott, J. B., & Christer, A. H. (1991). Modelling of condition based maintenance at the 

coal face. International Journal of Production Economics, 22(1), 1-11.  

Defense Acquisition University. (2012). Glossary of defense acquisition acronyms and 

terms. US: Department of Defense.  

Dekker, R. (1996). Applications of maintenance optimization models: A review and 

analysis. Reliability Engineering & System Safety, 51(3), 229-240.  

Department of the Air Force. (February 1994). US AIR FORCE COST AND PLANNING 

FACTORS. AFI 65-503.  Washington DC: HQ USAF.  

Deputy Under Secretary of Defense for Logistics and Materiel Readiness. (May, 2008). 

Condition based maintenance plus DoD guidebook. Washington DC: DUSD.  

Derriso, M. (2013). Industrial age NDE to information age SHM. 9th International 

Workshop on Structural Health Monitoring Stanford University, USA.  

Director, Operational Test & Evaluation. (2013). FY2013 annual report. (). Washington 

DC: Director, Operational Test & Evaluation, Office of the Secretary of Defense.  

Ellis, B. (2008). Condition based maintenance. The Jethro Project, November 10, 1-5.  

Farrar, C. R., & Worden, K. (2007). An introduction to structural health monitoring. 

Philosophical Transactions of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 365(1851), 303-315.  

Glaser, S. D., Li, H., Wang, M. L., Ou, J., & Lynch, J. (2007). Sensor technology 

innovation for the advancement of structural health monitoring: A strategic program 

of US-china research for the next decade. Smart Structures and Systems, 3(2), 221-

244.  

Gorinevsky, D., Gordon, G. A., Beard, S., Kumar, A., & Chang, F. (2005). Design of 

integrated SHM systems for commercial aircraft applications. 5th International 

Workshop on Structural Health Monitoring, Stanford, CA. (September) 1-8.  

Government Accountability Office. (2001). Air force inventory: Parts shortages are 

impacting operations and maintenance effectiveness. ( No. GAO-01-587). 

Washington DC: GAO Reports.  

Government Accountability Office. (2007). DEFENSE INVENTORY: Opportunities exist 

to save billions by reducing air Force’s unneeded spare parts inventory. ( No. GAO-

07-232). Washington DC: GAO.  



157 

Grubic, T., Jennions, I., & Baines, T. (2009). The interaction of PSS and PHM–a mutual 

benefit case. Paper presented at the Proceedings of the Annual Conference of the 

Prognostics and Health Management Society, San Diego, CA. (September)  

Gyekenyesi, A. (2013). Integrating nondestructive inspections with autonomic logistics 

and structural health monitoring strategies for aeronautic systems. Journal of 

Intelligent Material Systems and Structures, 24(5), 574-583.  

Harris, F. W. (1990). How many parts to make at once. Operations Research, 38(6), 947-

950.  

Hess, A., Calvello, G., & Dabney, T. (2004). PHM a key enabler for the JSF autonomic 

logistics support concept. Paper presented at the IEEE Aerospace Conference, 6 

3543-3550.  

Hess, A., Calvello, G., & Frith, P. (2005). Challenges, issues, and lessons learned chasing 

the "big P". real predictive prognostics. part 1. Paper presented at the IEEE 

Aerospace Conference, 3610-3619.  

Hess, A., Calvello, G., Frith, P., Engel, S. J., & Hoitsma, D. (2006). Challenges, issues, 

and lessons learned chasing the “ big P”: Real predictive prognostics part 2. Paper 

presented at the IEEE Aerospace Conference, 1-19.  

Hess, A., & Fila, L. (2002). The joint strike fighter (JSF) PHM concept: Potential impact 

on aging aircraft problems. Paper presented at the IEEE Aerospace Conference, , 6 

6-3021-6-3026.  

Hoyle, C., Mehr, A., Turner, I., & Chen, W. (2007). On quantifying cost-benefit of ISHM 

in aerospace systems. Paper presented at the IEEE Aerospace Conference, 1-7.  

Huiskonen, J. (2001). Maintenance spare parts logistics: Special characteristics and 

strategic choices. International Journal of Production Economics, 71(1–3), 125-133.  

Huynh, K. T., Barros, A., & Bérenguer, C. (2012). Adaptive condition-based 

maintenance decision framework for deteriorating systems operating under variable 

environment and uncertain condition monitoring. Paper presented at the Proceedings 

of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,  

Iyoob, I. M., Cassady, C. R., & Pohl, E. A. (2006). Establishing maintenance resource 

levels using selective maintenance. Engineering Economist, 51(2), 99-114.  

Jennions, I. K. (2011). Integrated vehicle health management: Perspectives on an 

emerging field. Integration, 2005, 09-22.  



158 

Kahlert, A., Giljohann, S., & Klingauf, U. (2014). Cost-benefit analysis and specification 

of component-level PHM systems in aircrafts. Annual Conference of the Prognostics 

and Health Management Society,  

Kennedy, W. J., Wayne Patterson, J., & Fredendall, L. D. (2002). An overview of recent 

literature on spare parts inventories. International Journal of Production Economics, 

76(2), 201-215.  

Khac Tuan Huynh, Barros, A., & Berenguer, C. (2012). Maintenance decision-making 

for systems operating under indirect condition monitoring: Value of online 

information and impact of measurement uncertainty. IEEE Transactions on 

Reliability, 61(2), 410-425.  

Lugtigheid, D., Banjevic, D., & Jardine, A. K. S. (2005). Component repairs: When to 

perform and what to do? Paper presented at the Annual Reliability and 

Maintainability Symposium Proceedings. 398-403.  

Mahulkar, V., McKay, S., Adams, D. E., & Chaturvedi, A. R. (2009). System-of-systems 

modeling and simulation of a ship environment with wireless and intelligent 

maintenance technologies. IEEE Transactions on Systems, Man and Cybernetics, 

Part A: Systems and Humans, 39(6), 1255-1270.  

Malley, M. E. (2001). A methodology for simulating the joint strike fighter's prognostics 

and health management system MS Thesis. Air Force Institute of Technology (AU), 

Wright-Patterson AFB OH.  

McCoy, G. T. (2011). The air force global logistics support center - war on lack of parts. 

Oklahoma: AFCLSC.  

Millar, R. C. (2007). A systems engineering approach to PHM for military aircraft 

propulsion systems. Paper presented at the    

 IEEE Aerospace Conference, 1-9.  

Modares, M., & Waksmanski, N. (2012). An overview of structural health monitoring for 

steel bridges. Practice Periodical on Structural Design and Construction. 

Nelms, D. (2008, August 1). Keeping the big boys flying. Aviation Today,  

Pattabhiraman, S., Kim, N. H., & Haftka, R. T. (2010). Effects of uncertainty reduction 

measures by structural health monitoring on safety and lifecycle cost of airplanes. 

Paper presented at the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural 

Dynamics and Materials Conference, (April)  

Pryor, G. A. (2008). Methodology for estimation of operational availability as applied to 

military systems. ITEA Journal, (29), 420-428.  



159 

Rebulanan, R. (2000). Simulation of the joint strike fighter's (JSF) autonomic logistics 

system (ALS) using the java' programming language MS Thesis. Air Force Institute 

of Technology (AU), Wright-Patterson AFB OH.  

ReliaSoft. (2007, Reliability basics: Availabiltiy and the different ways to calculate it. 

Reliability Hotwire, 79  

Roach, D. (2009). Real time crack detection using mountable comparative vacuum 

monitoring sensors. Smart Structures and Systems, 5(4), 317-328.  

Rodrigues, L. R., & Yoneyama, T. (2012). Spare parts inventory control for non-

repairable items based on prognostics and health monitoring information. Paper 

presented at the Annual Conference of the Prognostics and Health Management 

Society,  

Rodrigues, L. R., & Yoneyama, T. (2013). Maintenance planning optimization based on 

PHM information and spare parts availability. Paper presented at the Annual 

Conference of the Prognostics and Health Management Society, New Orleans, LA.  

Ryan, E., Schubert, C., Jacques, D., & Ritschel, J. (2013). A macro-stochastic model for 

improving the accuracy of DoD life cycle cost estimates. Journal of Public 

Procurement, 6(1), 43-74.  

Sankararaman, S., & Goebel, K. (2013). Why is the remaining useful life prediction 

uncertain. Paper presented at the Annual Conference of the Prognostics and Health 

Management Society,  

Sankararaman, S., Daigle, M., Saxena, A., & Goebel, K. (2013). Analytical algorithms to 

quantify the uncertainty in remaining useful life prediction. Paper presented at the 

IEEE Aerospace Conference, 1-11.  

Scanff, E., Feldman, K. L., Ghelam, S., Sandborn, P., Glade, M., & Foucher, B. (2007). 

Life cycle cost impact of using prognostic health management (PHM) for helicopter 

avionics. Microelectronics Reliability, 47(12), 1857-1864.  

Scarf, P. A. (1997). On the application of mathematical models in maintenance. 

European Journal of Operational Research, 99(3), 493-506.  

Seaver, M., Chattopadhyay, A., Papandreou-Suppapola, A., Kim, S. B., Kovvali, N., 

Farrar, C. R., Derriso, M. M. (2012). Workshop on transitioning structural health 

monitoring technology to military platforms. Journal of Intelligent Material Systems 

and Structures,  



160 

Shah, N. H., Soni, H. N., & Patel, K. A. (2013). Optimizing inventory and marketing 

policy for non-instantaneous deteriorating items with generalized type deterioration 

and holding cost rates. Omega, 41(2), 421-430.  

Shalal-Esa, A. (2013, 21 Oct). Insight: Lockheed's F-35 logistics system revolutionary 

but risky. Reuters  

Sherbrooke, C. C. (2004). Optimal inventory modeling of systems: Multi-echelon 

techniques Springer Science & Business Media.  

Sherif, Y. S. (1982). Reliability analysis: Optimal inspection and maintenance schedules 

of failing systems. Microelectronics Reliability, 22(1), 59-115.  

Shoup, L., Donohue, N., & Lang, M. (2011). The fix we're in for: The state of our 

nation's bridges. (). Washington DC: Transportation for America.  

Si, X., Wang, W., Hu, C., & Zhou, D. (2011). Remaining useful life estimation–A review 

on the statistical data driven approaches. European Journal of Operational 

Research, 213(1), 1-14.  

Smith, T. (2003). USAF condition-based maintenance plus (CBM) initiative. ( No. 

LM200301800).Air Force Logistics Management Agency.  

Speckmann, H. (2007). Structural health monitoring systems in airbus military. IMRBPB 

Meeting, Cologne, Germany. 1-33.  

Taft, D. K. (2013). IBM predictive analytics system averts supply-chain disruptions. 

EWeek, (3-22), 10/20/2013.  

The Boeing Corp. (2013). Boeing airplane health management. Retrieved from 

http://www.boeing.com/boeing/commercial/aviationservices/information-

services/real-time-operations/ahm.page  

Under Secretary of Defense (AT&L). (May 2008). Condition based maintenance plus 

(CBM+) DoD guidebook. Washington DC: Secretary of Defense.  

Van Horenbeek, A., & Pintelon, L. (2013a). A prognostic maintenance policy - effect on 

component lifetimes. Paper presented at the Annual Reliability and Maintainability 

Symposium (RAMS), 2013 Proceedings, 1-6.  

Van Horenbeek, A., & Pintelon, L. (2013b). A dynamic predictive maintenance policy 

for complex multi-component systems. Reliability Engineering & System Safety, 

120(0), 39-50.  



161 

Van Horenbeek, A., Van Ostaeyen, J., Duflou, J. R., & Pintelon, L. (2013). Quantifying 

the added value of an imperfectly performing condition monitoring system—

Application to a wind turbine gearbox. Reliability Engineering & System Safety, 

111(0), 45-57.  

Vandawaker, R. M., Jacques, D. R., & Freels, J. K. (2015). Impact of prognostic 

uncertainty in system health monitoring. International Journal of Prognostics and 

Health Management, 6(SP4)  

Vandawaker, R. M., Jacques, D. R., Ryan, E. T., Huscroft, J. R., & Freels, J. K. (2015). 

Integrated system health monitoring impact on non-repairable component supply 

methods. Journal of Quality in Maintenance Engineering, Submitted for publication  

Walls, M. R., Thomas, M. E., & Brady, T. F. (1999). Improving system maintenance 

decisions: A value of information framework. Engineering Economist, 44(2), 151.  

Wheatley, D., Gzara, F., & Jewkes, E. (2015). Logic-based benders decomposition for an 

inventory-location problem with service constraints. Omega, 55(0), 10-23.  

Williams, Z. (2006). Benefits of IVHM: An analytical approach. Paper presented at the 

IEEE Aerospace Conference, 9.  

Wilmering, T. J., & Ramesh, A. V. (2005). Assessing the impact of health management 

approaches on system total cost of ownership. Paper presented at the IEEE 

Aerospace Conference, 3910-3920.  

Yager, N. (2003). Models for sortie generation with autonomic logistics capabilities. MS 

Thesis. Air Force Institute of Technology (AU), Wright-Patterson AFB OH.  



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, 
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number.   

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

17-09-2015 
2. REPORT TYPE  

Doctoral Dissertation  
3. DATES COVERED (From – To) 

October 2013 – August 2015 

TITLE AND SUBTITLE 

 
Integrated Systems Health Management as an Enabler for 

Condition Based Maintenance and Autonomic Logistics 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 

Vandawaker, Robert M., Lieutenant Colonel, USAF 

5d.  PROJECT NUMBER 
 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 

      Air Force Institute of Technology  

     Graduate School of Engineering and Management (AFIT/EN)  

     2950 Hobson Way, Building 640  

     Wright Patterson Air Force Base OH 45433-7765  

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

     AFIT-ENV-DS-15-S-050 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

  

( Intentionally left blank) 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

     DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

13. SUPPLEMENTARY NOTES   
This material is declared a work of the U.S. Government and is not subject to copyright protection in the 

United States. 

14. ABSTRACT  

Health monitoring systems have demonstrated the ability to detect potential failures in components and 

predict how long until a critical failure is likely to occur. Implementing these systems on fielded 

structures, aircraft, or other vehicles is often a struggle to prove cost savings or operational 

improvements beyond improved safety. A system architecture to identify how the health monitoring 

systems are integrated into fielded aircraft is developed to assess cost, operations, maintenance, and 

logistics trade-spaces. The efficiency of a health monitoring system is examined for impacts to the 

operation of a squadron of cargo aircraft revealing sensitivity to and tolerance for false alarms as a key 

factor in total system performance. The research focuses on the impacts of system-wide changes to 

several key metrics: materiel availability, materiel reliability, ownership cost, and mean downtime. 

Changes to theses system-wide variables include: diagnostic and prognostic error, false alarm sensitivity, 

supply methods and timing, maintenance manning, and maintenance repair window. Potential cost 

savings in maintenance and logistics processes are identified as well as increases in operational 

availability. The result of this research is the development of a tool to conduct trade-space analyses on 

the effects of health monitoring techniques on system performance and operations and maintenance 

costs. 
15. SUBJECT TERMS 

Health monitoring; condition based maintenance; maintenance grouping; logistics 

16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION 
OF  
     ABSTRACT 

 

UU 

18. 
NUMBER  
OF PAGES 
 

174 

19a.  NAME OF RESPONSIBLE PERSON 

David R. Jacques, AFIT/ENV 
a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 

U 

19b.  TELEPHONE NUMBER (Include area code) 

(937) 255-3355, ext 3329    

(david.jacques@afit.edu) 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


